Fonctions Fann
Sommaire
- fann_cascadetrain_on_data — Trains on an entire dataset, for a period of time using the Cascade2 training algorithm
- fann_cascadetrain_on_file — Trains on an entire dataset read from file, for a period of time using the Cascade2 training algorithm
- fann_clear_scaling_params — Clears scaling parameters
- fann_copy — Crée une copie d'une structure fann
- fann_create_from_file — Consruit une propagation de retour du réseau neuronal depuis un fichier de configuration
- fann_create_shortcut_array — Crée une propagation de retour standart de réseau neuronal qui n'est pas totalement connecté, et a des connexions raccourcies
- fann_create_shortcut — Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
- fann_create_sparse_array — Creates a standard backpropagation neural network, which is not fully connected using an array of layer sizes
- fann_create_sparse — Creates a standard backpropagation neural network, which is not fully connected
- fann_create_standard_array — Creates a standard fully connected backpropagation neural network using an array of layer sizes
- fann_create_standard — Creates a standard fully connected backpropagation neural network
- fann_create_train_from_callback — Crée la structure de données d'entrainement depuis une fonction fournie par l'utilisateur
- fann_create_train — Crée une structure vide de données d'entrainement
- fann_descale_input — Scale data in input vector after get it from ann based on previously calculated parameters
- fann_descale_output — Scale data in output vector after get it from ann based on previously calculated parameters
- fann_descale_train — Descale input and output data based on previously calculated parameters
- fann_destroy_train — Détruit les données d'entrainement
- fann_destroy — Détruit le réseau en entier, et libère proprement toute la mémoire associée
- fann_duplicate_train_data — Retourne une copie exact des données d'entrainement fann
- fann_get_activation_function — Returns the activation function
- fann_get_activation_steepness — Returns the activation steepness for supplied neuron and layer number
- fann_get_bias_array — Get the number of bias in each layer in the network
- fann_get_bit_fail_limit — Returns the bit fail limit used during training
- fann_get_bit_fail — The number of fail bits
- fann_get_cascade_activation_functions_count — Returns the number of cascade activation functions
- fann_get_cascade_activation_functions — Returns the cascade activation functions
- fann_get_cascade_activation_steepnesses_count — The number of activation steepnesses
- fann_get_cascade_activation_steepnesses — Returns the cascade activation steepnesses
- fann_get_cascade_candidate_change_fraction — Returns the cascade candidate change fraction
- fann_get_cascade_candidate_limit — Return the candidate limit
- fann_get_cascade_candidate_stagnation_epochs — Returns the number of cascade candidate stagnation epochs
- fann_get_cascade_max_cand_epochs — Returns the maximum candidate epochs
- fann_get_cascade_max_out_epochs — Returns the maximum out epochs
- fann_get_cascade_min_cand_epochs — Returns the minimum candidate epochs
- fann_get_cascade_min_out_epochs — Returns the minimum out epochs
- fann_get_cascade_num_candidate_groups — Returns the number of candidate groups
- fann_get_cascade_num_candidates — Returns the number of candidates used during training
- fann_get_cascade_output_change_fraction — Returns the cascade output change fraction
- fann_get_cascade_output_stagnation_epochs — Returns the number of cascade output stagnation epochs
- fann_get_cascade_weight_multiplier — Returns the weight multiplier
- fann_get_connection_array — Récupère les connexions dans le réseau
- fann_get_connection_rate — Récupère le taux de connexion lorsque le réseau a été créé
- fann_get_errno — Retourne le numéro de la dernière erreur
- fann_get_errstr — Retourne le dernier message d'erreur
- fann_get_layer_array — Get the number of neurons in each layer in the network
- fann_get_learning_momentum — Returns the learning momentum
- fann_get_learning_rate — Returns the learning rate
- fann_get_MSE — Reads the mean square error from the network
- fann_get_network_type — Get the type of neural network it was created as
- fann_get_num_input — Récupère le nombre de neurones entrants
- fann_get_num_layers — Récupère le nombre de couches du réseau neuronal
- fann_get_num_output — Récupère le nombre de neurones sortants
- fann_get_quickprop_decay — Returns the decay which is a factor that weights should decrease in each iteration during quickprop training
- fann_get_quickprop_mu — Retourne le facteur mu
- fann_get_rprop_decrease_factor — Retourne le facteur d'accroissement utilisé pendant l'entrainement RPROP
- fann_get_rprop_delta_max — Retourne la taille maximale de l'étape
- fann_get_rprop_delta_min — Retourne la taille minimale de l'étape
- fann_get_rprop_delta_zero — Retourne la taille initiale de l'étape
- fann_get_rprop_increase_factor — Retourne le facteur croissant utilisé pendant l'entrainement RPROP
- fann_get_sarprop_step_error_shift — Retourne le décalage de l'erreur lors de l'étape sarprop
- fann_get_sarprop_step_error_threshold_factor — Retourne le facteur de seuil d'erreur lors de l'étape sarprop
- fann_get_sarprop_temperature — Retourne la température sarprop
- fann_get_sarprop_weight_decay_shift — Retourne le changement décroissant du poids sarprop
- fann_get_total_connections — Récupère le nombre total de connexions dans la totalité du réseau
- fann_get_total_neurons — Récupère le nombre total de neurones dans la totalité du réseau
- fann_get_train_error_function — Retourne la fonction d'erreur utilisée pendant l'entrainement
- fann_get_train_stop_function — Retourne la fonction d'arrêt utilisée pendant l'entrainement
- fann_get_training_algorithm — Retourne l'algorithme d'entrainement
- fann_init_weights — Initialise les poids en utilisant les algorythme Widrow et Nguyen
- fann_length_train_data — Retourne le nombre de masques d'entrainement dans les données d'entrainement
- fann_merge_train_data — Fusionne les données d'entrainement
- fann_num_input_train_data — Retourne le nombre d'entrées dans chaque masque d'entrainement dans les données d'entrainement
- fann_num_output_train_data — Retourne le nombre de sortie dans chaque masque d'entrainement dans les données d'entrainement
- fann_print_error — Affiche le message d'erreur
- fann_randomize_weights — Donne à chaque connexion un poids aléatoire compris entre min_weight et max_weight
- fann_read_train_from_file — Lit un fichier contenant les données d'entrainement
- fann_reset_errno — Réinitialise le numéro de la dernière erreur
- fann_reset_errstr — Réinitialise le message de la dernière erreur
- fann_reset_MSE — Réinitialise l'erreur quadratique moyenne du réseau
- fann_run — Exécute les entrées via le réseau neuronal
- fann_save_train — Sauvegarde la structure d'entrainement dans un fichier
- fann_save — Sauvegarde le réseau complet dans un fichier de configuration
- fann_scale_input_train_data — Met à l'échelle les entrées dans les données d'entrainement à l'intervalle spécifié
- fann_scale_input — Met à l'échelle les données dans le vecteur d'entrée avant de les donner à ANN, en se basant sur les paramètres précédemment calculés
- fann_scale_output_train_data — Met à l'échelle les sorties dans les données d'entrainement à l'intervalle spécifié
- fann_scale_output — Met à l'échelle les données dans le vecteur de sortie avant de les passer à ANN, en se basant sur les paramètres précédemment calculés
- fann_scale_train_data — Met à l'échelle les entrées et les sorties dans les données d'entrainement à l'intervalle spécifié
- fann_scale_train — Met à l'échelle les données d'entrée et de sortie en se basant sur les paramètres précédemment calculés
- fann_set_activation_function_hidden — Défini la fonction d'activation pour toutes les couches cachées
- fann_set_activation_function_layer — Défini la fonction d'activation pour tous les neurones de la couche spécifiée
- fann_set_activation_function_output — Défini la fonction d'activation pour la couche d'entrée
- fann_set_activation_function — Défini la fonction d'activation pour le neurone et la couche spécifiés
- fann_set_activation_steepness_hidden — Défini la raideur de la pente d'activation pour tous les neurones des couches cachées
- fann_set_activation_steepness_layer — Défini la pente d'activation pour tous les neurones dans la couche dont le numéro est fourni
- fann_set_activation_steepness_output — Défini la raideur de la pente d'activation dans la couche de sortie
- fann_set_activation_steepness — Défini la pente d'activation pour le neurone et le numéro de couche donnés
- fann_set_bit_fail_limit — Défini le bit sûr limite, utilisé pendant l'entrainement
- fann_set_callback — Défini la fonction de rappel à utiliser pendant l'entrainement
- fann_set_cascade_activation_functions — Défini le tableau des fonctions d'activation candidate en cascade
- fann_set_cascade_activation_steepnesses — Défini le tableaux des raideurs d'activation candidate en cascade
- fann_set_cascade_candidate_change_fraction — Défini la fraction de modification candidate en cascade
- fann_set_cascade_candidate_limit — Défini la limite candidate
- fann_set_cascade_candidate_stagnation_epochs — Défini le nombre d'époques de stagnation candidates en cascade
- fann_set_cascade_max_cand_epochs — Défini l'époque maximale candidate
- fann_set_cascade_max_out_epochs — Défini l'époque maximale de sortie
- fann_set_cascade_min_cand_epochs — Défini l'époque minimale candidate
- fann_set_cascade_min_out_epochs — Défini l'époque minimale de sortie
- fann_set_cascade_num_candidate_groups — Défini le nombre de groupes candidats
- fann_set_cascade_output_change_fraction — Défini la fraction de modification de sortie en cascade
- fann_set_cascade_output_stagnation_epochs — Défini le nombre d'époques de stagnation en cascade de sortie
- fann_set_cascade_weight_multiplier — Défini le multiplicateur de poids
- fann_set_error_log — Défini l'endroit où les erreurs seront historisées
- fann_set_input_scaling_params — Calcule les paramètres d'échelle d'entrée pour une utilisation future, en se basant sur les données d'entrainement
- fann_set_learning_momentum — Défini la dynamique d'apprentissage
- fann_set_learning_rate — Défini le taux d'apprentissage
- fann_set_output_scaling_params — Calcule les paramètres d'échelle de sortie pour une utilisation future, en se basant sur les données d'entrainement
- fann_set_quickprop_decay — Défini le facteur décroissant quickprop
- fann_set_quickprop_mu — Défini le facteur quickprop mu
- fann_set_rprop_decrease_factor — Défini le facteur de diminution utilisé pendant l'entrainement RPROP
- fann_set_rprop_delta_max — Défini la taille maximale de l'étape
- fann_set_rprop_delta_min — Défini la taille minimale de l'étape
- fann_set_rprop_delta_zero — Défini la taille de l'étape initiale
- fann_set_rprop_increase_factor — Défini le facteur d'augmentation utilisé pendant l'entrainement RPROP
- fann_set_sarprop_step_error_shift — Défini le changement de l'étape d'erreur sarprop
- fann_set_sarprop_step_error_threshold_factor — Défini le facteur de seuil de l'étape d'erreur sarprop
- fann_set_sarprop_temperature — Défini la températeur sarprop
- fann_set_sarprop_weight_decay_shift — Défini le changement décroissant du poids de sarprop
- fann_set_scaling_params — Calcule les paramètres d'échelles d'entrée et de sortie utilisés en se basant sur les données d'entrainement
- fann_set_train_error_function — Défini la fonction d'erreur utilisée pendant l'entrainement
- fann_set_train_stop_function — Défini la fonction d'arrêt à utiliser durant l'entrainement
- fann_set_training_algorithm — Défini l'algorithme d'entrainement
- fann_set_weight_array — Défini les connexions dans le réseau
- fann_set_weight — Défini une connexion dans le réseau
- fann_shuffle_train_data — Mélange les données d'entrainement, et rend aléaloire leurs ordres
- fann_subset_train_data — Retourne une copie d'un sous-jeu de données d'entrainement
- fann_test_data — Effectue un test sur un jeu de données d'entrainement et calcule le MSE pour ces données
- fann_test — Effectue un test avec un jeu d'entrées et un jeu de sorties désirées
- fann_train_epoch — Effectue un entrainement avec un jeu de données d'entrainement
- fann_train_on_data — Effectue un entrainement sur un jeu de données complet pour une période de temps
- fann_train_on_file — Effectue un entrainement sur un jeu complet de données, qui peut être lu depuis un fichier, pour une période de temps
- fann_train — Effectue un entrainement sur une itération avec un jeu d'entrées, et un jeu de sorties désirées
Version en cache
23/12/2024 00:52:11 Cette version de la page est en cache (à la date du 23/12/2024 00:52:11) afin d'accélérer le traitement. Vous pouvez activer le mode utilisateur dans le menu en haut pour afficher la dernère version de la page.Document créé le 30/01/2003, dernière modification le 26/10/2018
Source du document imprimé : https://www.gaudry.be/php-rf-ref.fann.html
L'infobrol est un site personnel dont le contenu n'engage que moi. Le texte est mis à disposition sous licence CreativeCommons(BY-NC-SA). Plus d'info sur les conditions d'utilisation et sur l'auteur.
Références
Ces références et liens indiquent des documents consultés lors de la rédaction de cette page, ou qui peuvent apporter un complément d'information, mais les auteurs de ces sources ne peuvent être tenus responsables du contenu de cette page.
L'auteur de ce site est seul responsable de la manière dont sont présentés ici les différents concepts, et des libertés qui sont prises avec les ouvrages de référence. N'oubliez pas que vous devez croiser les informations de sources multiples afin de diminuer les risques d'erreurs.