The SVM class
(PECL svm >= 0.1.0)
Introduction
Class synopsis
Predefined Constants
SVM Constants
SVM::C_SVC
-
The basic C_SVC SVM type. The default, and a good starting point
SVM::NU_SVC
-
The NU_SVC type uses a different, more flexible, error weighting
SVM::ONE_CLASS
-
One class SVM type. Train just on a single class, using outliers as negative examples
SVM::EPSILON_SVR
-
A SVM type for regression (predicting a value rather than just a class)
SVM::NU_SVR
-
A NU style SVM regression type
SVM::KERNEL_LINEAR
-
A very simple kernel, can work well on large document classification problems
SVM::KERNEL_POLY
-
A polynomial kernel
SVM::KERNEL_RBF
-
The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification
SVM::KERNEL_SIGMOID
-
A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network
SVM::KERNEL_PRECOMPUTED
-
A precomputed kernel - currently unsupported.
SVM::OPT_TYPE
-
The options key for the SVM type
SVM::OPT_KERNEL_TYPE
-
The options key for the kernel type
SVM::OPT_DEGREE
SVM::OPT_SHRINKING
-
Training parameter, boolean, for whether to use the shrinking heuristics
SVM::OPT_PROBABILITY
-
Training parameter, boolean, for whether to collect and use probability estimates
SVM::OPT_GAMMA
-
Algorithm parameter for Poly, RBF and Sigmoid kernel types.
SVM::OPT_NU
-
The option key for the nu parameter, only used in the NU_ SVM types
SVM::OPT_EPS
-
The option key for the Epsilon parameter, used in epsilon regression
SVM::OPT_P
-
Training parameter used by Episilon SVR regression
SVM::OPT_COEF_ZERO
-
Algorithm parameter for poly and sigmoid kernels
SVM::OPT_C
-
The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples.
SVM::OPT_CACHE_SIZE
-
Memory cache size, in MB
Table of Contents
- SVM::__construct — Construct a new SVM object
- SVM::crossvalidate — Test training params on subsets of the training data
- SVM::getOptions — Return the current training parameters
- SVM::setOptions — Set training parameters
- SVM::train — Create a SVMModel based on training data
Vertaling niet beschikbaar
De PHP-handleiding is nog niet in het Nederlands vertaald, dus het scherm is in het Engels. Als u wilt, kunt u het ook in het Frans of in het Duits raadplegen.
Als je de moed voelt, kun je je vertaling aanbieden ;-)
Nederlandse vertaling
U hebt gevraagd om deze site in het Nederlands te bezoeken. Voor nu wordt alleen de interface vertaald, maar nog niet alle inhoud.Als je me wilt helpen met vertalingen, is je bijdrage welkom. Het enige dat u hoeft te doen, is u op de site registreren en mij een bericht sturen waarin u wordt gevraagd om u toe te voegen aan de groep vertalers, zodat u de gewenste pagina's kunt vertalen. Een link onderaan elke vertaalde pagina geeft aan dat u de vertaler bent en heeft een link naar uw profiel.
Bij voorbaat dank.
Document heeft de 30/01/2003 gemaakt, de laatste keer de 26/10/2018 gewijzigd
Bron van het afgedrukte document:https://www.gaudry.be/nl/php-rf-class.svm.html
De infobrol is een persoonlijke site waarvan de inhoud uitsluitend mijn verantwoordelijkheid is. De tekst is beschikbaar onder CreativeCommons-licentie (BY-NC-SA). Meer info op de gebruiksvoorwaarden en de auteur.
Referenties
Deze verwijzingen en links verwijzen naar documenten die geraadpleegd zijn tijdens het schrijven van deze pagina, of die aanvullende informatie kunnen geven, maar de auteurs van deze bronnen kunnen niet verantwoordelijk worden gehouden voor de inhoud van deze pagina.
De auteur Deze site is als enige verantwoordelijk voor de manier waarop de verschillende concepten, en de vrijheden die met de referentiewerken worden genomen, hier worden gepresenteerd. Vergeet niet dat u meerdere broninformatie moet doorgeven om het risico op fouten te verkleinen.