Notations mathématiques

SymboleDomaineNomDescriptionExemple
SymboleDomaineNomDescriptionExemple
˜EnsemblesRelation d'équivalence... est équivalent à ...mn*(n-1) ˜ mn2 lorsque n est très grand
{ , }EnsemblesEnsemble en extensionL'ensemble de ...{1, 2, 3} est l'ensemble des valeurs 1, 2, et 3
EnsemblesEnsemble videL'ensemble vide∅ = {}
EnsemblesAppartenance à un ensemble... est un élément de ...3 ∈ {1, 2, 3, 4}
EnsemblesNon appartenance à un ensemble... n'est pas un élément de ...5∉{1, 2, 3, 4}
\EnsemblesDifférence... moins ...A\B désigne l'ensemble de tous les éléments de A qui n'appartiennent pas à B
{1,3,4,6,8}∪{2,3,5,6} = {1,4,8}
EnsemblesIntersection... inter ...
Correspond au "et" logique
AB désigne l'ensemble des éléments qui appartiennent à la fois à A et à B
{1,3,4,6,8}∪{2,3,5,6} = {3,6}
EnsemblesRéunion... union ...
Correspond au "ou inclusif" logique
x, xAB⇔(xA)∨(xB)
AB désigne l'ensemble qui contient tous les éléments de A et de B
{1,3,4,6,8}∪{2,3,5,6} = {1,2,3,4,5,6,8}
EnsemblesSous-ensemble... est compris dans ...{1,2} ⊂ {1,2,3}
EnsemblesSur-ensemble... contient ...{1,2,3} ⊃ {1,2}
Ensembles ... n'est pas compris dans ...{1,2,3} ⊄ {4,5,6}
EnsemblesSous-ensemble ... est compris dans ou est égal à ...{1,2}⊆{1,2,3}
{1,2}⊆{1,2}
EnsemblesSur-ensemble... contient ou est égal à ...{1,2,3}⊇{1,2}
{1,2}⊇{1,2}
LogiqueQuantificateur universelPour tout...
Quel que soit...
xE, x>0
Pour tout x appartenant à E, x est plus grand que zéro
LogiqueQuantificateur existentielIl existe au moins un ... tel queval : (1, val) ∈ liste
Il existe au moins une valeur val tel que val est à l'indice 1 dans la liste
Il n'existe pas deLogiqueQuantificateur existentiel négatifIl n'existe pas de ... tel queIl n'existe pas deval : (0,val) ∈ liste
Il n'existe pas de valeur val tel que val est à l'indice zéro dans la liste
LogiqueConjonction logiqueCorrespond au "et" logiqueA=BC
A est true si B est true ET si C est true
LogiqueDisjonction logiqueCorrespond au "ou inclusif" logiqueA=BC
A est true si B est true OU si C est true OU si B et C sont true
¬LogiqueNégation logiqueCorrespond au "non" logiqueA=<¬B
A est true si B est false et A est false si B est true
Logiquesomme directe  
LogiqueDisjonction logiqueproduit vectoriel
Correspond au "ou exclusif" logique (XOR)
A=BC
A est true si B est true OU si C est true
A est false si B ET C sont true
LogiqueImplicationA implique B
si A, alors B
 
Logiqueéquivalence logiqueA équivaut à B
A existe si et seulement si B existe
 
Généralités partiellement 
Généralités contient comme élément 
GénéralitésProduitproduit de .. pour .. de .. à .. 
Généralitéssomme  
Généralitésracine carrée  
GénéralitésProportionnalité... est proportionnel à ... 
Généralités infini 
Généralités intégral 
Généralités c'est pourquoi 
Généralités semblable à 
Généralités sensiblement égal à 
Généralités presque égal à 
GénéralitésNon égalité (Différence)... n'est pas égal à ...1 ≠ 1 ⇒ false
1 ≠ 2 <⇒ true
=GénéralitésEgalité... est strictement égal à ...1 = 1 ⇒ true
1 = 2 ⇒ false
Généralités identique à 
<GénéralitésComparaison... est strictement plus petit que...1 < 1 ⇒ false
1 < 2 ⇒ true
2 < 1 ⇒ false
GénéralitésComparaison... est plus petit ou égal à ...1 ≤ 1 ⇒ true
1 ≤ 2 ⇒ true
2 ≤ 1 ⇒ false
>GénéralitésComparaison... est strictement plus grand que...1 > 1 ⇒ false
1 > 2 ⇒ false
2 > 1 ⇒ true
GénéralitésComparaison... est plus grand ou égal à ...1≥1 ⇒ true
1≥2 ⇒ false
2 ≥ 1 ⇒ true
f:X→YGénéralitésFonctionde ... vers ...
a pour ensemble de définition ... et pour ensemble d'arrivée ...

d'origine ... pour but ...
f:X→Y signifie que la fonction f a pour origine X et pour but Y.
⌊x⌋Généralités Partie entière par excès
Borne supérieure
 
⌈x⌉Généralités Partie entière
Borne inférieure
 
˜StatistiquesDistribution de probabilité  

Notations ensembliste

Quelques exemple supplémentaires sur la notation ensembliste...

NotationDescription
NotationDescription
{x | P(x)}Ensemble des éléments x vérifiant la propriété P
∀ x :Pour tout x tel que...
y :Il existe y tel que...
aAL'élément a appartient à l'ensemble A
aAL'élément a n'appartient pas à l'ensemble A
AB;ABL'ensemble A est inclu dans l'ensemble B : aA, aB
AB=CL'ensemble C est l'intersection de A et de B : cC, cAcB
AB=DL'ensemble D est l'union de A et de B : dD, dAdB
A-B=E ; A\B =EL'ensemble E représente les éléments de A moins ceux de B : eE, eAeB

Nederlandse vertaling

U hebt gevraagd om deze site in het Nederlands te bezoeken. Voor nu wordt alleen de interface vertaald, maar nog niet alle inhoud.

Als je me wilt helpen met vertalingen, is je bijdrage welkom. Het enige dat u hoeft te doen, is u op de site registreren en mij een bericht sturen waarin u wordt gevraagd om u toe te voegen aan de groep vertalers, zodat u de gewenste pagina's kunt vertalen. Een link onderaan elke vertaalde pagina geeft aan dat u de vertaler bent en heeft een link naar uw profiel.

Bij voorbaat dank.

Document heeft de 08/11/2009 gemaakt, de laatste keer de 28/10/2018 gewijzigd
Bron van het afgedrukte document:https://www.gaudry.be/nl/math-notations.html

De infobrol is een persoonlijke site waarvan de inhoud uitsluitend mijn verantwoordelijkheid is. De tekst is beschikbaar onder CreativeCommons-licentie (BY-NC-SA). Meer info op de gebruiksvoorwaarden en de auteur.

Referenties

  1. Bekijk - pdf-document Taal van het document:fr Table des caractères Unicode : unicode.org, U2200 (15/06/10)

Deze verwijzingen en links verwijzen naar documenten die geraadpleegd zijn tijdens het schrijven van deze pagina, of die aanvullende informatie kunnen geven, maar de auteurs van deze bronnen kunnen niet verantwoordelijk worden gehouden voor de inhoud van deze pagina.
De auteur Deze site is als enige verantwoordelijk voor de manier waarop de verschillende concepten, en de vrijheden die met de referentiewerken worden genomen, hier worden gepresenteerd. Vergeet niet dat u meerdere broninformatie moet doorgeven om het risico op fouten te verkleinen.

Inhoudsopgave Haut