java.util.concurrent

Class ForkJoinPool

  • All Implemented Interfaces:
    Executor, ExecutorService

    public class ForkJoinPool
    extends AbstractExecutorService
    An ExecutorService for running ForkJoinTasks. A ForkJoinPool provides the entry point for submissions from non-ForkJoinTask clients, as well as management and monitoring operations.

    A ForkJoinPool differs from other kinds of ExecutorService mainly by virtue of employing work-stealing: all threads in the pool attempt to find and execute subtasks created by other active tasks (eventually blocking waiting for work if none exist). This enables efficient processing when most tasks spawn other subtasks (as do most ForkJoinTasks). When setting asyncMode to true in constructors, ForkJoinPools may also be appropriate for use with event-style tasks that are never joined.

    A ForkJoinPool is constructed with a given target parallelism level; by default, equal to the number of available processors. The pool attempts to maintain enough active (or available) threads by dynamically adding, suspending, or resuming internal worker threads, even if some tasks are stalled waiting to join others. However, no such adjustments are guaranteed in the face of blocked IO or other unmanaged synchronization. The nested ForkJoinPool.ManagedBlocker interface enables extension of the kinds of synchronization accommodated.

    In addition to execution and lifecycle control methods, this class provides status check methods (for example getStealCount()) that are intended to aid in developing, tuning, and monitoring fork/join applications. Also, method toString() returns indications of pool state in a convenient form for informal monitoring.

    As is the case with other ExecutorServices, there are three main task execution methods summarized in the following table. These are designed to be used by clients not already engaged in fork/join computations in the current pool. The main forms of these methods accept instances of ForkJoinTask, but overloaded forms also allow mixed execution of plain Runnable- or Callable- based activities as well. However, tasks that are already executing in a pool should normally NOT use these pool execution methods, but instead use the within-computation forms listed in the table.

    Call from non-fork/join clients Call from within fork/join computations
    Arrange async execution execute(ForkJoinTask) ForkJoinTask.fork()
    Await and obtain result invoke(ForkJoinTask) ForkJoinTask.invoke()
    Arrange exec and obtain Future submit(ForkJoinTask) ForkJoinTask.fork() (ForkJoinTasks are Futures)

    Eerste pagina van API Java Inhoudsopgave Haut

    Sample Usage. Normally a single ForkJoinPool is used for all parallel task execution in a program or subsystem. Otherwise, use would not usually outweigh the construction and bookkeeping overhead of creating a large set of threads. For example, a common pool could be used for the SortTasks illustrated in RecursiveAction. Because ForkJoinPool uses threads in daemon mode, there is typically no need to explicitly shutdown such a pool upon program exit.

     static final ForkJoinPool mainPool = new ForkJoinPool();
     ...
     public void sort(long[] array) {
       mainPool.invoke(new SortTask(array, 0, array.length));
     }
     

    Implementation notes: This implementation restricts the maximum number of running threads to 32767. Attempts to create pools with greater than the maximum number result in IllegalArgumentException.

    This implementation rejects submitted tasks (that is, by throwing RejectedExecutionException) only when the pool is shut down or internal resources have been exhausted.

    Since:
    1.7
    • Field Detail

      • defaultForkJoinWorkerThreadFactory

        public static final ForkJoinPool.ForkJoinWorkerThreadFactory defaultForkJoinWorkerThreadFactory
        Creates a new ForkJoinWorkerThread. This factory is used unless overridden in ForkJoinPool constructors.
    • Constructor Detail

      • ForkJoinPool

        public ForkJoinPool(int parallelism)
        Creates a ForkJoinPool with the indicated parallelism level, the default thread factory, no UncaughtExceptionHandler, and non-async LIFO processing mode.
        Parameters:
        parallelism - the parallelism level
        Throws:
        IllegalArgumentException - if parallelism less than or equal to zero, or greater than implementation limit
        SecurityException - if a security manager exists and the caller is not permitted to modify threads because it does not hold RuntimePermission("modifyThread")
      • ForkJoinPool

        public ForkJoinPool(int parallelism,
                    ForkJoinPool.ForkJoinWorkerThreadFactory factory,
                    Thread.UncaughtExceptionHandler handler,
                    boolean asyncMode)
        Creates a ForkJoinPool with the given parameters.
        Parameters:
        parallelism - the parallelism level. For default value, use Runtime.availableProcessors().
        factory - the factory for creating new threads. For default value, use defaultForkJoinWorkerThreadFactory.
        handler - the handler for internal worker threads that terminate due to unrecoverable errors encountered while executing tasks. For default value, use null.
        asyncMode - if true, establishes local first-in-first-out scheduling mode for forked tasks that are never joined. This mode may be more appropriate than default locally stack-based mode in applications in which worker threads only process event-style asynchronous tasks. For default value, use false.
        Throws:
        IllegalArgumentException - if parallelism less than or equal to zero, or greater than implementation limit
        NullPointerException - if the factory is null
        SecurityException - if a security manager exists and the caller is not permitted to modify threads because it does not hold RuntimePermission("modifyThread")
    • Method Detail

      • invoke

        public <T> T invoke(ForkJoinTask<T> task)
        Performs the given task, returning its result upon completion. If the computation encounters an unchecked Exception or Error, it is rethrown as the outcome of this invocation. Rethrown exceptions behave in the same way as regular exceptions, but, when possible, contain stack traces (as displayed for example using ex.printStackTrace()) of both the current thread as well as the thread actually encountering the exception; minimally only the latter.
        Parameters:
        task - the task
        Returns:
        the task's result
        Throws:
        NullPointerException - if the task is null
        RejectedExecutionException - if the task cannot be scheduled for execution
      • execute

        public void execute(Runnable task)
        Description copied from interface: Executor
        Executes the given command at some time in the future. The command may execute in a new thread, in a pooled thread, or in the calling thread, at the discretion of the Executor implementation.
        Parameters:
        task - the runnable task
        Throws:
        NullPointerException - if the task is null
        RejectedExecutionException - if the task cannot be scheduled for execution
      • submit

        public <T> ForkJoinTask<T> submit(Callable<T> task)
        Description copied from interface: ExecutorService
        Submits a value-returning task for execution and returns a Future representing the pending results of the task. The Future's get method will return the task's result upon successful completion.

        If you would like to immediately block waiting for a task, you can use constructions of the form result = exec.submit(aCallable).get();

        Note: The Executors class includes a set of methods that can convert some other common closure-like objects, for example, PrivilegedAction to Callable form so they can be submitted.

        Specified by:
        submit in interface ExecutorService
        Overrides:
        submit in class AbstractExecutorService
        Parameters:
        task - the task to submit
        Returns:
        a Future representing pending completion of the task
        Throws:
        NullPointerException - if the task is null
        RejectedExecutionException - if the task cannot be scheduled for execution
      • invokeAll

        public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
        Description copied from interface: ExecutorService
        Executes the given tasks, returning a list of Futures holding their status and results when all complete. Future.isDone() is true for each element of the returned list. Note that a completed task could have terminated either normally or by throwing an exception. The results of this method are undefined if the given collection is modified while this operation is in progress.
        Specified by:
        invokeAll in interface ExecutorService
        Overrides:
        invokeAll in class AbstractExecutorService
        Parameters:
        tasks - the collection of tasks
        Returns:
        A list of Futures representing the tasks, in the same sequential order as produced by the iterator for the given task list, each of which has completed.
        Throws:
        NullPointerException - if tasks or any of its elements are null
        RejectedExecutionException - if any task cannot be scheduled for execution
      • getUncaughtExceptionHandler

        public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler()
        Returns the handler for internal worker threads that terminate due to unrecoverable errors encountered while executing tasks.
        Returns:
        the handler, or null if none
      • getParallelism

        public int getParallelism()
        Returns the targeted parallelism level of this pool.
        Returns:
        the targeted parallelism level of this pool
      • getPoolSize

        public int getPoolSize()
        Returns the number of worker threads that have started but not yet terminated. The result returned by this method may differ from getParallelism() when threads are created to maintain parallelism when others are cooperatively blocked.
        Returns:
        the number of worker threads
      • getAsyncMode

        public boolean getAsyncMode()
        Returns true if this pool uses local first-in-first-out scheduling mode for forked tasks that are never joined.
        Returns:
        true if this pool uses async mode
      • getRunningThreadCount

        public int getRunningThreadCount()
        Returns an estimate of the number of worker threads that are not blocked waiting to join tasks or for other managed synchronization. This method may overestimate the number of running threads.
        Returns:
        the number of worker threads
      • getActiveThreadCount

        public int getActiveThreadCount()
        Returns an estimate of the number of threads that are currently stealing or executing tasks. This method may overestimate the number of active threads.
        Returns:
        the number of active threads
      • isQuiescent

        public boolean isQuiescent()
        Returns true if all worker threads are currently idle. An idle worker is one that cannot obtain a task to execute because none are available to steal from other threads, and there are no pending submissions to the pool. This method is conservative; it might not return true immediately upon idleness of all threads, but will eventually become true if threads remain inactive.
        Returns:
        true if all threads are currently idle
      • getStealCount

        public long getStealCount()
        Returns an estimate of the total number of tasks stolen from one thread's work queue by another. The reported value underestimates the actual total number of steals when the pool is not quiescent. This value may be useful for monitoring and tuning fork/join programs: in general, steal counts should be high enough to keep threads busy, but low enough to avoid overhead and contention across threads.
        Returns:
        the number of steals
      • getQueuedTaskCount

        public long getQueuedTaskCount()
        Returns an estimate of the total number of tasks currently held in queues by worker threads (but not including tasks submitted to the pool that have not begun executing). This value is only an approximation, obtained by iterating across all threads in the pool. This method may be useful for tuning task granularities.
        Returns:
        the number of queued tasks
      • getQueuedSubmissionCount

        public int getQueuedSubmissionCount()
        Returns an estimate of the number of tasks submitted to this pool that have not yet begun executing. This method may take time proportional to the number of submissions.
        Returns:
        the number of queued submissions
      • hasQueuedSubmissions

        public boolean hasQueuedSubmissions()
        Returns true if there are any tasks submitted to this pool that have not yet begun executing.
        Returns:
        true if there are any queued submissions
      • pollSubmission

        protected ForkJoinTask<?> pollSubmission()
        Removes and returns the next unexecuted submission if one is available. This method may be useful in extensions to this class that re-assign work in systems with multiple pools.
        Returns:
        the next submission, or null if none
      • drainTasksTo

        protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c)
        Removes all available unexecuted submitted and forked tasks from scheduling queues and adds them to the given collection, without altering their execution status. These may include artificially generated or wrapped tasks. This method is designed to be invoked only when the pool is known to be quiescent. Invocations at other times may not remove all tasks. A failure encountered while attempting to add elements to collection c may result in elements being in neither, either or both collections when the associated exception is thrown. The behavior of this operation is undefined if the specified collection is modified while the operation is in progress.
        Parameters:
        c - the collection to transfer elements into
        Returns:
        the number of elements transferred
      • toString

        public String toString()
        Returns a string identifying this pool, as well as its state, including indications of run state, parallelism level, and worker and task counts.
        Overrides:
        toString in class Object
        Returns:
        a string identifying this pool, as well as its state
      • shutdown

        public void shutdown()
        Initiates an orderly shutdown in which previously submitted tasks are executed, but no new tasks will be accepted. Invocation has no additional effect if already shut down. Tasks that are in the process of being submitted concurrently during the course of this method may or may not be rejected.
        Throws:
        SecurityException - if a security manager exists and the caller is not permitted to modify threads because it does not hold RuntimePermission("modifyThread")
      • shutdownNow

        public List<Runnable> shutdownNow()
        Attempts to cancel and/or stop all tasks, and reject all subsequently submitted tasks. Tasks that are in the process of being submitted or executed concurrently during the course of this method may or may not be rejected. This method cancels both existing and unexecuted tasks, in order to permit termination in the presence of task dependencies. So the method always returns an empty list (unlike the case for some other Executors).
        Returns:
        an empty list
        Throws:
        SecurityException - if a security manager exists and the caller is not permitted to modify threads because it does not hold RuntimePermission("modifyThread")
      • isTerminated

        public boolean isTerminated()
        Returns true if all tasks have completed following shut down.
        Returns:
        true if all tasks have completed following shut down
      • isTerminating

        public boolean isTerminating()
        Returns true if the process of termination has commenced but not yet completed. This method may be useful for debugging. A return of true reported a sufficient period after shutdown may indicate that submitted tasks have ignored or suppressed interruption, or are waiting for IO, causing this executor not to properly terminate. (See the advisory notes for class ForkJoinTask stating that tasks should not normally entail blocking operations. But if they do, they must abort them on interrupt.)
        Returns:
        true if terminating but not yet terminated
      • isShutdown

        public boolean isShutdown()
        Returns true if this pool has been shut down.
        Returns:
        true if this pool has been shut down
      • awaitTermination

        public boolean awaitTermination(long timeout,
                               TimeUnit unit)
                                 throws InterruptedException
        Blocks until all tasks have completed execution after a shutdown request, or the timeout occurs, or the current thread is interrupted, whichever happens first.
        Parameters:
        timeout - the maximum time to wait
        unit - the time unit of the timeout argument
        Returns:
        true if this executor terminated and false if the timeout elapsed before termination
        Throws:
        InterruptedException - if interrupted while waiting
      • managedBlock

        public static void managedBlock(ForkJoinPool.ManagedBlocker blocker)
                                 throws InterruptedException
        Blocks in accord with the given blocker. If the current thread is a ForkJoinWorkerThread, this method possibly arranges for a spare thread to be activated if necessary to ensure sufficient parallelism while the current thread is blocked.

        If the caller is not a ForkJoinTask, this method is behaviorally equivalent to

         while (!blocker.isReleasable())
           if (blocker.block())
             return;
         
        If the caller is a ForkJoinTask, then the pool may first be expanded to ensure parallelism, and later adjusted.
        Parameters:
        blocker - the blocker
        Throws:
        InterruptedException - if blocker.block did so
      • newTaskFor

        protected <T> RunnableFuture<T> newTaskFor(Runnable runnable,
                                       T value)
        Description copied from class: AbstractExecutorService
        Returns a RunnableFuture for the given runnable and default value.
        Overrides:
        newTaskFor in class AbstractExecutorService
        Parameters:
        runnable - the runnable task being wrapped
        value - the default value for the returned future
        Returns:
        a RunnableFuture which when run will run the underlying runnable and which, as a Future, will yield the given value as its result and provide for cancellation of the underlying task.
      • newTaskFor

        protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable)
        Description copied from class: AbstractExecutorService
        Returns a RunnableFuture for the given callable task.
        Overrides:
        newTaskFor in class AbstractExecutorService
        Parameters:
        callable - the callable task being wrapped
        Returns:
        a RunnableFuture which when run will call the underlying callable and which, as a Future, will yield the callable's result as its result and provide for cancellation of the underlying task.

Nederlandse vertaling

U hebt gevraagd om deze site in het Nederlands te bezoeken. Voor nu wordt alleen de interface vertaald, maar nog niet alle inhoud.

Als je me wilt helpen met vertalingen, is je bijdrage welkom. Het enige dat u hoeft te doen, is u op de site registreren en mij een bericht sturen waarin u wordt gevraagd om u toe te voegen aan de groep vertalers, zodat u de gewenste pagina's kunt vertalen. Een link onderaan elke vertaalde pagina geeft aan dat u de vertaler bent en heeft een link naar uw profiel.

Bij voorbaat dank.

Document heeft de 11/06/2005 gemaakt, de laatste keer de 04/03/2020 gewijzigd
Bron van het afgedrukte document:https://www.gaudry.be/nl/java-api-rf-java/util/concurrent/ForkJoinPool.html

De infobrol is een persoonlijke site waarvan de inhoud uitsluitend mijn verantwoordelijkheid is. De tekst is beschikbaar onder CreativeCommons-licentie (BY-NC-SA). Meer info op de gebruiksvoorwaarden en de auteur.

Referenties

  1. Bekijk - html-document Taal van het document:fr Manuel PHP : https://docs.oracle.com

Deze verwijzingen en links verwijzen naar documenten die geraadpleegd zijn tijdens het schrijven van deze pagina, of die aanvullende informatie kunnen geven, maar de auteurs van deze bronnen kunnen niet verantwoordelijk worden gehouden voor de inhoud van deze pagina.
De auteur Deze site is als enige verantwoordelijk voor de manier waarop de verschillende concepten, en de vrijheden die met de referentiewerken worden genomen, hier worden gepresenteerd. Vergeet niet dat u meerdere broninformatie moet doorgeven om het risico op fouten te verkleinen.

Inhoudsopgave Haut