Rechercher dans le manuel MySQL
12.2 Type Conversion in Expression Evaluation
When an operator is used with operands of different types, type conversion occurs to make the operands compatible. Some conversions occur implicitly. For example, MySQL automatically converts strings to numbers as necessary, and vice versa.
It is also possible to convert a number to a string explicitly
using the CAST()
function.
Conversion occurs implicitly with the
CONCAT()
function because it
expects string arguments.
- -> 38.8, '38.8'
- -> 38.8, '38.8'
See later in this section for information about the character set
of implicit number-to-string conversions, and for modified rules
that apply to CREATE TABLE ... SELECT
statements.
The following rules describe how conversion occurs for comparison operations:
If one or both arguments are
NULL
, the result of the comparison isNULL
, except for theNULL
-safe<=>
equality comparison operator. ForNULL <=> NULL
, the result is true. No conversion is needed.If both arguments in a comparison operation are strings, they are compared as strings.
If both arguments are integers, they are compared as integers.
Hexadecimal values are treated as binary strings if not compared to a number.
If one of the arguments is a
TIMESTAMP
orDATETIME
column and the other argument is a constant, the constant is converted to a timestamp before the comparison is performed. This is done to be more ODBC-friendly. This is not done for the arguments toIN()
. To be safe, always use complete datetime, date, or time strings when doing comparisons. For example, to achieve best results when usingBETWEEN
with date or time values, useCAST()
to explicitly convert the values to the desired data type.A single-row subquery from a table or tables is not considered a constant. For example, if a subquery returns an integer to be compared to a
DATETIME
value, the comparison is done as two integers. The integer is not converted to a temporal value. To compare the operands asDATETIME
values, useCAST()
to explicitly convert the subquery value toDATETIME
.If one of the arguments is a decimal value, comparison depends on the other argument. The arguments are compared as decimal values if the other argument is a decimal or integer value, or as floating-point values if the other argument is a floating-point value.
In all other cases, the arguments are compared as floating-point (real) numbers.
For information about conversion of values from one temporal type to another, see Section 11.3.6, “Conversion Between Date and Time Types”.
Comparison of JSON values takes place at two levels. The first level of comparison is based on the JSON types of the compared values. If the types differ, the comparison result is determined solely by which type has higher precedence. If the two values have the same JSON type, a second level of comparison occurs using type-specific rules. For comparison of JSON and non-JSON values, the non-JSON value is converted to JSON and the values compared as JSON values. For details, see Comparison and Ordering of JSON Values.
The following examples illustrate conversion of strings to numbers for comparison operations:
- -> 0
- -> 1
- -> 0
- -> 1
For comparisons of a string column with a number, MySQL cannot use
an index on the column to look up the value quickly. If
str_col
is an indexed string column,
the index cannot be used when performing the lookup in the
following statement:
The reason for this is that there are many different strings that
may convert to the value 1
, such as
'1'
, ' 1'
, or
'1a'
.
Comparisons that use floating-point numbers (or values that are converted to floating-point numbers) are approximate because such numbers are inexact. This might lead to results that appear inconsistent:
- -> 1
- -> 0
Such results can occur because the values are converted to floating-point numbers, which have only 53 bits of precision and are subject to rounding:
- -> 1.8015376320243e+16
Furthermore, the conversion from string to floating-point and from integer to floating-point do not necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas the string is converted digit by digit in an operation that involves floating-point multiplications.
The results shown will vary on different systems, and can be
affected by factors such as computer architecture or the compiler
version or optimization level. One way to avoid such problems is
to use CAST()
so that a value is
not converted implicitly to a float-point number:
For more information about floating-point comparisons, see Section B.6.4.8, “Problems with Floating-Point Values”.
The server includes dtoa
, a conversion library
that provides the basis for improved conversion between string or
DECIMAL
values and
approximate-value
(FLOAT
/DOUBLE
)
numbers:
Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows conversion differences.
Accurate representation of values in cases where results previously did not provide sufficient precision, such as for values close to IEEE limits.
Conversion of numbers to string format with the best possible precision. The precision of
dtoa
is always the same or better than that of the standard C library functions.
Because the conversions produced by this library differ in some
cases from non-dtoa
results, the potential
exists for incompatibilities in applications that rely on previous
results. For example, applications that depend on a specific exact
result from previous conversions might need adjustment to
accommodate additional precision.
The dtoa
library provides conversions with the
following properties. D
represents a
value with a DECIMAL
or string
representation, and F
represents a
floating-point number in native binary (IEEE) format.
F
->D
conversion is done with the best possible precision, returningD
as the shortest string that yieldsF
when read back in and rounded to the nearest value in native binary format as specified by IEEE.D
->F
conversion is done such thatF
is the nearest native binary number to the input decimal stringD
.
These properties imply that F
->
D
-> F
conversions are lossless unless F
is
-inf
, +inf
, or
NaN
. The latter values are not supported
because the SQL standard defines them as invalid values for
FLOAT
or
DOUBLE
.
For D
->
F
-> D
conversions, a sufficient condition for losslessness is that
D
uses 15 or fewer digits of precision,
is not a denormal value, -inf
,
+inf
, or NaN
. In some cases,
the conversion is lossless even if D
has more than 15 digits of precision, but this is not always the
case.
Implicit conversion of a numeric or temporal value to string
produces a value that has a character set and collation determined
by the character_set_connection
and collation_connection
system
variables. (These variables commonly are set with
SET NAMES
. For information about
connection character sets, see
Section 10.4, “Connection Character Sets and Collations”.)
This means that such a conversion results in a character
(nonbinary) string (a CHAR
,
VARCHAR
, or
LONGTEXT
value), except in the case
that the connection character set is set to
binary
. In that case, the conversion result is
a binary string (a BINARY
,
VARBINARY
, or
LONGBLOB
value).
For integer expressions, the preceding remarks about expression evaluation apply somewhat differently for expression assignment; for example, in a statement such as this:
In this case, the table in the column resulting from the
expression has type INT
or
BIGINT
depending on the length of
the integer expression. If the maximum length of the expression
does not fit in an INT
,
BIGINT
is used instead. The length
is taken from the max_length
value of the
SELECT
result set metadata (see
Section 28.7.5, “C API Data Structures”). This means that you can
force a BIGINT
rather than
INT
by use of a sufficiently long
expression:
Traduction non disponible
Le manuel MySQL n'est pas encore traduit en français sur l'infobrol. Seule la version anglaise est disponible pour l'instant.
Document créé le 26/06/2006, dernière modification le 26/10/2018
Source du document imprimé : https://www.gaudry.be/mysql-rf-type-conversion.html
L'infobrol est un site personnel dont le contenu n'engage que moi. Le texte est mis à disposition sous licence CreativeCommons(BY-NC-SA). Plus d'info sur les conditions d'utilisation et sur l'auteur.
Références
Ces références et liens indiquent des documents consultés lors de la rédaction de cette page, ou qui peuvent apporter un complément d'information, mais les auteurs de ces sources ne peuvent être tenus responsables du contenu de cette page.
L'auteur de ce site est seul responsable de la manière dont sont présentés ici les différents concepts, et des libertés qui sont prises avec les ouvrages de référence. N'oubliez pas que vous devez croiser les informations de sources multiples afin de diminuer les risques d'erreurs.