Rechercher dans le manuel MySQL
Chapter 17 Replication
Table of Contents [+/-]
- 17.1 Configuring Replication [+/-]
- 17.1.1 Binary Log File Position Based Replication Configuration Overview
- 17.1.2 Setting Up Binary Log File Position Based Replication
- 17.1.3 Replication with Global Transaction Identifiers
- 17.1.4 MySQL Multi-Source Replication
- 17.1.5 Changing Replication Modes on Online Servers
- 17.1.6 Replication and Binary Logging Options and Variables
- 17.1.7 Common Replication Administration Tasks
- 17.2 Replication Implementation [+/-]
- 17.3 Replication Solutions [+/-]
- 17.3.1 Using Replication for Backups
- 17.3.2 Handling an Unexpected Halt of a Replication Slave
- 17.3.3 Monitoring Row-based Replication
- 17.3.4 Using Replication with Different Master and Slave Storage Engines
- 17.3.5 Using Replication for Scale-Out
- 17.3.6 Replicating Different Databases to Different Slaves
- 17.3.7 Improving Replication Performance
- 17.3.8 Switching Masters During Failover
- 17.3.9 Setting Up Replication to Use Encrypted Connections
- 17.3.10 Semisynchronous Replication
- 17.3.11 Delayed Replication
- 17.4 Replication Notes and Tips [+/-]
Replication enables data from one MySQL database server (the master) to be copied to one or more MySQL database servers (the slaves). Replication is asynchronous by default; slaves do not need to be connected permanently to receive updates from the master. Depending on the configuration, you can replicate all databases, selected databases, or even selected tables within a database.
Advantages of replication in MySQL include:
Scale-out solutions - spreading the load among multiple slaves to improve performance. In this environment, all writes and updates must take place on the master server. Reads, however, may take place on one or more slaves. This model can improve the performance of writes (since the master is dedicated to updates), while dramatically increasing read speed across an increasing number of slaves.
Data security - because data is replicated to the slave, and the slave can pause the replication process, it is possible to run backup services on the slave without corrupting the corresponding master data.
Analytics - live data can be created on the master, while the analysis of the information can take place on the slave without affecting the performance of the master.
Long-distance data distribution - you can use replication to create a local copy of data for a remote site to use, without permanent access to the master.
For information on how to use replication in such scenarios, see Section 17.3, “Replication Solutions”.
MySQL 8.0 supports different methods of replication. The traditional method is based on replicating events from the master's binary log, and requires the log files and positions in them to be synchronized between master and slave. The newer method based on global transaction identifiers (GTIDs) is transactional and therefore does not require working with log files or positions within these files, which greatly simplifies many common replication tasks. Replication using GTIDs guarantees consistency between master and slave as long as all transactions committed on the master have also been applied on the slave. For more information about GTIDs and GTID-based replication in MySQL, see Section 17.1.3, “Replication with Global Transaction Identifiers”. For information on using binary log file position based replication, see Section 17.1, “Configuring Replication”.
Replication in MySQL supports different types of synchronization. The original type of synchronization is one-way, asynchronous replication, in which one server acts as the master, while one or more other servers act as slaves. This is in contrast to the synchronous replication which is a characteristic of NDB Cluster (see Chapter 22, MySQL NDB Cluster 8.0). In MySQL 8.0, semisynchronous replication is supported in addition to the built-in asynchronous replication. With semisynchronous replication, a commit performed on the master blocks before returning to the session that performed the transaction until at least one slave acknowledges that it has received and logged the events for the transaction; see Section 17.3.10, “Semisynchronous Replication”. MySQL 8.0 also supports delayed replication such that a slave server deliberately lags behind the master by at least a specified amount of time; see Section 17.3.11, “Delayed Replication”. For scenarios where synchronous replication is required, use NDB Cluster (see Chapter 22, MySQL NDB Cluster 8.0).
There are a number of solutions available for setting up replication between servers, and the best method to use depends on the presence of data and the engine types you are using. For more information on the available options, see Section 17.1.2, “Setting Up Binary Log File Position Based Replication”.
There are two core types of replication format, Statement Based Replication (SBR), which replicates entire SQL statements, and Row Based Replication (RBR), which replicates only the changed rows. You can also use a third variety, Mixed Based Replication (MBR). For more information on the different replication formats, see Section 17.2.1, “Replication Formats”.
Replication is controlled through a number of different options and variables. For more information, see Section 17.1.6, “Replication and Binary Logging Options and Variables”.
You can use replication to solve a number of different problems, including performance, supporting the backup of different databases, and as part of a larger solution to alleviate system failures. For information on how to address these issues, see Section 17.3, “Replication Solutions”.
For notes and tips on how different data types and statements are treated during replication, including details of replication features, version compatibility, upgrades, and potential problems and their resolution, see Section 17.4, “Replication Notes and Tips”. For answers to some questions often asked by those who are new to MySQL Replication, see Section A.13, “MySQL 8.0 FAQ: Replication”.
For detailed information on the implementation of replication, how replication works, the process and contents of the binary log, background threads and the rules used to decide how statements are recorded and replicated, see Section 17.2, “Replication Implementation”.
Traduction non disponible
Le manuel MySQL n'est pas encore traduit en français sur l'infobrol. Seule la version anglaise est disponible pour l'instant.
Document créé le 26/06/2006, dernière modification le 26/10/2018
Source du document imprimé : https://www.gaudry.be/mysql-rf-replication.html
L'infobrol est un site personnel dont le contenu n'engage que moi. Le texte est mis à disposition sous licence CreativeCommons(BY-NC-SA). Plus d'info sur les conditions d'utilisation et sur l'auteur.
Références
Ces références et liens indiquent des documents consultés lors de la rédaction de cette page, ou qui peuvent apporter un complément d'information, mais les auteurs de ces sources ne peuvent être tenus responsables du contenu de cette page.
L'auteur de ce site est seul responsable de la manière dont sont présentés ici les différents concepts, et des libertés qui sont prises avec les ouvrages de référence. N'oubliez pas que vous devez croiser les informations de sources multiples afin de diminuer les risques d'erreurs.