Rechercher dans le manuel MySQL

12.20.4 Detection of Functional Dependence

The following discussion provides several examples of the ways in which MySQL detects functional dependencies. The examples use this notation:

  1. {X} -> {Y}

Understand this as X uniquely determines Y, which also means that Y is functionally dependent on X.

The examples use the world database, which can be downloaded from https://dev.mysql.com/doc/index-other.html. You can find details on how to install the database on the same page.

Functional Dependencies Derived from Keys

The following query selects, for each country, a count of spoken languages:

  1. SELECT co.Name, COUNT(*)
  2. FROM countrylanguage cl, country co
  3. WHERE cl.CountryCode = co.Code
  4. GROUP BY co.Code;

co.Code is a primary key of co, so all columns of co are functionally dependent on it, as expressed using this notation:

  1. {co.Code} -> {co.*}

Thus, co.name is functionally dependent on GROUP BY columns and the query is valid.

A UNIQUE index over a NOT NULL column could be used instead of a primary key and the same functional dependence would apply. (This is not true for a UNIQUE index that permits NULL values because it permits multiple NULL values and in that case uniqueness is lost.)

Functional Dependencies Derived from Multiple-Column Keys and from Equalities

This query selects, for each country, a list of all spoken languages and how many people speak them:

  1. SELECT co.Name, cl.Language,
  2. cl.Percentage * co.Population / 100.0 AS SpokenBy
  3. FROM countrylanguage cl, country co
  4. WHERE cl.CountryCode = co.Code
  5. GROUP BY cl.CountryCode, cl.Language;

The pair (cl.CountryCode, cl.Language) is a two-column composite primary key of cl, so that column pair uniquely determines all columns of cl:

  1. {cl.CountryCode, cl.Language} -> {cl.*}

Moreover, because of the equality in the WHERE clause:

  1. {cl.CountryCode} -> {co.Code}

And, because co.Code is primary key of co:

  1. {co.Code} -> {co.*}

Uniquely determines relationships are transitive, therefore:

  1. {cl.CountryCode, cl.Language} -> {cl.*,co.*}

As a result, the query is valid.

As with the previous example, a UNIQUE key over NOT NULL columns could be used instead of a primary key.

An INNER JOIN condition can be used instead of WHERE. The same functional dependencies apply:

  1. SELECT co.Name, cl.Language,
  2. cl.Percentage * co.Population/100.0 AS SpokenBy
  3. FROM countrylanguage cl INNER JOIN country co
  4. ON cl.CountryCode = co.Code
  5. GROUP BY cl.CountryCode, cl.Language;

Table des matières Haut

Functional Dependency Special Cases

Whereas an equality test in a WHERE condition or INNER JOIN condition is symmetric, an equality test in an outer join condition is not, because tables play different roles.

Assume that referential integrity has been accidentally broken and there exists a row of countrylanguage without a corresponding row in country. Consider the same query as in the previous example, but with a LEFT JOIN:

  1. SELECT co.Name, cl.Language,
  2. cl.Percentage * co.Population/100.0 AS SpokenBy
  3. FROM countrylanguage cl LEFT JOIN country co
  4. ON cl.CountryCode = co.Code
  5. GROUP BY cl.CountryCode, cl.Language;

For a given value of cl.CountryCode, the value of co.Code in the join result is either found in a matching row (determined by cl.CountryCode) or is NULL-complemented if there is no match (also determined by cl.CountryCode). In each case, this relationship applies:

  1. {cl.CountryCode} -> {co.Code}

cl.CountryCode is itself functionally dependent on {cl.CountryCode, cl.Language} which is a primary key.

If in the join result co.Code is NULL-complemented, co.Name is as well. If co.Code is not NULL-complemented, then because co.Code is a primary key, it determines co.Name. Therefore, in all cases:

  1. {co.Code} -> {co.Name}

Which yields:

  1. {cl.CountryCode, cl.Language} -> {cl.*,co.*}

As a result, the query is valid.

However, suppose that the tables are swapped, as in this query:

  1. SELECT co.Name, cl.Language,
  2. cl.Percentage * co.Population/100.0 AS SpokenBy
  3. FROM country co LEFT JOIN countrylanguage cl
  4. ON cl.CountryCode = co.Code
  5. GROUP BY cl.CountryCode, cl.Language;

Now this relationship does not apply:

  1. {cl.CountryCode, cl.Language} -> {cl.*,co.*}

Indeed, all NULL-complemented rows made for cl will be put into a single group (they have both GROUP BY columns equal to NULL), and inside this group the value of co.Name can vary. The query is invalid and MySQL rejects it.

Functional dependence in outer joins is thus linked to whether determinant columns belong to the left or right side of the LEFT JOIN. Determination of functional dependence becomes more complex if there are nested outer joins or the join condition does not consist entirely of equality comparisons.

Table des matières Haut

Functional Dependencies and Views

Suppose that a view on countries produces their code, their name in uppercase, and how many different official languages they have:

  1. CREATE VIEW Country2 AS
  2. SELECT co.Code, UPPER(co.Name) AS UpperName,
  3. COUNT(cl.Language) AS OfficialLanguages
  4. FROM country AS co JOIN countrylanguage AS cl
  5. ON cl.CountryCode = co.Code
  6. WHERE cl.isOfficial = 'T'
  7. GROUP BY co.Code;

This definition is valid because:

  1. {co.Code} -> {co.*}

In the view result, the first selected column is co.Code, which is also the group column and thus determines all other selected expressions:

  1. {Country2.Code} -> {Country2.*}

MySQL understands this and uses this information, as described following.

This query displays countries, how many different official languages they have, and how many cities they have, by joining the view with the city table:

  1. SELECT co2.Code, co2.UpperName, co2.OfficialLanguages,
  2. COUNT(*) AS Cities
  3. FROM country2 AS co2 JOIN city ci
  4. ON ci.CountryCode = co2.Code
  5. GROUP BY co2.Code;

This query is valid because, as seen previously:

  1. {co2.Code} -> {co2.*}

MySQL is able to discover a functional dependency in the result of a view and use that to validate a query which uses the view. The same would be true if country2 were a derived table (or common table expression), as in:

  1. SELECT co2.Code, co2.UpperName, co2.OfficialLanguages,
  2. COUNT(*) AS Cities
  3. (
  4.  SELECT co.Code, UPPER(co.Name) AS UpperName,
  5.  COUNT(cl.Language) AS OfficialLanguages
  6.  FROM country AS co JOIN countrylanguage AS cl
  7.  ON cl.CountryCode=co.Code
  8.  WHERE cl.isOfficial='T'
  9.  GROUP BY co.Code
  10. ) AS co2
  11. JOIN city ci ON ci.CountryCode = co2.Code
  12. GROUP BY co2.Code;

Table des matières Haut

Combinations of Functional Dependencies

MySQL is able to combine all of the preceding types of functional dependencies (key based, equality based, view based) to validate more complex queries.


Rechercher dans le manuel MySQL

Traduction non disponible

Le manuel MySQL n'est pas encore traduit en français sur l'infobrol. Seule la version anglaise est disponible pour l'instant.

Document créé le 26/06/2006, dernière modification le 26/10/2018
Source du document imprimé : https://www.gaudry.be/mysql-rf-group-by-functional-dependence.html

L'infobrol est un site personnel dont le contenu n'engage que moi. Le texte est mis à disposition sous licence CreativeCommons(BY-NC-SA). Plus d'info sur les conditions d'utilisation et sur l'auteur.

Références

  1. Consulter le document html Langue du document :en Manuel MySQL : https://dev.mysql.com/

Ces références et liens indiquent des documents consultés lors de la rédaction de cette page, ou qui peuvent apporter un complément d'information, mais les auteurs de ces sources ne peuvent être tenus responsables du contenu de cette page.
L'auteur de ce site est seul responsable de la manière dont sont présentés ici les différents concepts, et des libertés qui sont prises avec les ouvrages de référence. N'oubliez pas que vous devez croiser les informations de sources multiples afin de diminuer les risques d'erreurs.

Table des matières Haut