- java.lang.Object
-
- java.security.spec.ECFieldF2m
-
-
Constructor Summary
Constructors Constructor and Description ECFieldF2m(int m)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with normal basis.ECFieldF2m(int m, BigInteger rp)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with polynomial basis.ECFieldF2m(int m, int[] ks)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with polynomial basis.
-
Method Summary
Methods Modifier and Type Method and Description boolean
equals(Object obj)
Compares this finite field for equality with the specified object.int
getFieldSize()
Returns the field size in bits which ism
for this characteristic 2 finite field.int
getM()
Returns the valuem
of this characteristic 2 finite field.int[]
getMidTermsOfReductionPolynomial()
Returns an integer array which contains the order of the middle term(s) of the reduction polynomial for polynomial basis or null for normal basis.BigInteger
getReductionPolynomial()
Returns a BigInteger whose i-th bit corresponds to the i-th coefficient of the reduction polynomial for polynomial basis or null for normal basis.int
hashCode()
Returns a hash code value for this characteristic 2 finite field.
-
-
-
Constructor Detail
-
ECFieldF2m
public ECFieldF2m(int m)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with normal basis.- Parameters:
m
- with 2^m
being the number of elements.- Throws:
IllegalArgumentException
- ifm
is not positive.
-
ECFieldF2m
public ECFieldF2m(int m, BigInteger rp)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with polynomial basis. The reduction polynomial for this field is based onrp
whose i-th bit correspondes to the i-th coefficient of the reduction polynomial.Note: A valid reduction polynomial is either a trinomial (X^
m
+ X^k
+ 1 withm
>k
>= 1) or a pentanomial (X^m
+ X^k3
+ X^k2
+ X^k1
+ 1 withm
>k3
>k2
>k1
>= 1).- Parameters:
m
- with 2^m
being the number of elements.rp
- the BigInteger whose i-th bit corresponds to the i-th coefficient of the reduction polynomial.- Throws:
NullPointerException
- ifrp
is null.IllegalArgumentException
- ifm
is not positive, orrp
does not represent a valid reduction polynomial.
-
ECFieldF2m
public ECFieldF2m(int m, int[] ks)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with polynomial basis. The reduction polynomial for this field is based onks
whose content contains the order of the middle term(s) of the reduction polynomial. Note: A valid reduction polynomial is either a trinomial (X^m
+ X^k
+ 1 withm
>k
>= 1) or a pentanomial (X^m
+ X^k3
+ X^k2
+ X^k1
+ 1 withm
>k3
>k2
>k1
>= 1), soks
should have length 1 or 3.- Parameters:
m
- with 2^m
being the number of elements.ks
- the order of the middle term(s) of the reduction polynomial. Contents of this array are copied to protect against subsequent modification.- Throws:
NullPointerException
- ifks
is null.IllegalArgumentException
- ifm
is not positive, or the length ofks
is neither 1 nor 3, or values inks
are not betweenm
-1 and 1 (inclusive) and in descending order.
-
-
Method Detail
-
getFieldSize
public int getFieldSize()
Returns the field size in bits which ism
for this characteristic 2 finite field.- Specified by:
getFieldSize
in interfaceECField
- Returns:
- the field size in bits.
-
getM
public int getM()
Returns the valuem
of this characteristic 2 finite field.- Returns:
m
with 2^m
being the number of elements.
-
getReductionPolynomial
public BigInteger getReductionPolynomial()
Returns a BigInteger whose i-th bit corresponds to the i-th coefficient of the reduction polynomial for polynomial basis or null for normal basis.- Returns:
- a BigInteger whose i-th bit corresponds to the i-th coefficient of the reduction polynomial for polynomial basis or null for normal basis.
-
getMidTermsOfReductionPolynomial
public int[] getMidTermsOfReductionPolynomial()
Returns an integer array which contains the order of the middle term(s) of the reduction polynomial for polynomial basis or null for normal basis.- Returns:
- an integer array which contains the order of the middle term(s) of the reduction polynomial for polynomial basis or null for normal basis. A new array is returned each time this method is called.
-
equals
public boolean equals(Object obj)
Compares this finite field for equality with the specified object.- Overrides:
equals
in classObject
- Parameters:
obj
- the object to be compared.- Returns:
- true if
obj
is an instance of ECFieldF2m and bothm
and the reduction polynomial match, false otherwise. - See Also:
Object.hashCode()
,HashMap
-
hashCode
public int hashCode()
Returns a hash code value for this characteristic 2 finite field.- Overrides:
hashCode
in classObject
- Returns:
- a hash code value.
- See Also:
Object.equals(java.lang.Object)
,System.identityHashCode(java.lang.Object)
-
-
Traduction non disponible
Les API Java ne sont pas encore traduites en français sur l'infobrol. Seule la version anglaise est disponible pour l'instant.
Version en cache
22/11/2024 04:45:34 Cette version de la page est en cache (à la date du 22/11/2024 04:45:34) afin d'accélérer le traitement. Vous pouvez activer le mode utilisateur dans le menu en haut pour afficher la dernère version de la page.Document créé le 31/08/2006, dernière modification le 04/03/2020
Source du document imprimé : https://www.gaudry.be/java-api-rf-java/security/spec/ECFieldF2m.html
L'infobrol est un site personnel dont le contenu n'engage que moi. Le texte est mis à disposition sous licence CreativeCommons(BY-NC-SA). Plus d'info sur les conditions d'utilisation et sur l'auteur.
Références
Ces références et liens indiquent des documents consultés lors de la rédaction de cette page, ou qui peuvent apporter un complément d'information, mais les auteurs de ces sources ne peuvent être tenus responsables du contenu de cette page.
L'auteur de ce site est seul responsable de la manière dont sont présentés ici les différents concepts, et des libertés qui sont prises avec les ouvrages de référence. N'oubliez pas que vous devez croiser les informations de sources multiples afin de diminuer les risques d'erreurs.