Niveaux des graphes

La décomposition en niveaux nous fournit un ordre topologique pour le graphe, puisque nous pouvons considérer les sommets "de haut en bas" (comparer les niveaux des sommets).

La décomposition en niveaux n'est possible que si le graphe ne possède pas de circuit.
Cela peut se démontrer de la manière suivante :

  • soient x et y deux sommets d'un mê;me circuit, avec les arcs (x,y) et  (y,x)
  • Selon l'arc (x,y), nous définissons le niveau de x à 01 et le niveau de y à 1.
  • Ensuite, selon l'arc (y,x), le niveau de y doit être inférieur au niveau de x, mais ces niveaux ont déjà été définis, et 1 < 0 est faux.

Algorithme de décomposition en niveaux

  1. //initialisation
  2. x : level[x] := -1;
  3. x : deg[x] := degré intérieur de x;
  4. := 0;
  5. //décomposition possible
  6. decomp := true;
  7.  
  8. //exécution
  9. tant_que  x : level[x] = -1 decomp faire
  10.  
  11. decomp :=false;
  12.  
  13. // ∀ sommet non traité
  14. x : deg[x] = 0 level[x] = -1 faire
  15.  
  16. // positionner x sur le niveau courant
  17. level[x] := k;
  18.  
  19. // poursuivre la décomposition
  20. decomp := true;
  21.  
  22. fin
  23.  
  24. // ∀ sommet de ce niveau
  25. x : level[x] = k faire
  26.  
  27. // ∀ sommet y incident au sommet x
  28. // rappel : A est l'ensemble des arcs
  29. y : (x,y)  A
  30.  
  31. // retirer le sommet car il est traité
  32. // => diminuer le degré intérieur
  33. deg[y] := deg[y]-1;
  34.  
  35. fin
  36.  
  37. // changer de niveau
  38. := k+1;
  39.  
  40. fin
  41.  

Complexité

La complexité de l'algorithme de décomposition en niveaux est de Ordre de grandeur(n2), bien que les deux imbriqués laissent présumer une complexité de Ordre de grandeur(n3).

Version en cache

21/01/2025 11:05:19 Cette version de la page est en cache (à la date du 21/01/2025 11:05:19) afin d'accélérer le traitement. Vous pouvez activer le mode utilisateur dans le menu en haut pour afficher la dernère version de la page.

Document créé le 03/01/2010, dernière modification le 26/10/2018
Source du document imprimé : https://www.gaudry.be/graphes-decomposition-niveaux.html

L'infobrol est un site personnel dont le contenu n'engage que moi. Le texte est mis à disposition sous licence CreativeCommons(BY-NC-SA). Plus d'info sur les conditions d'utilisation et sur l'auteur.

Notes
  1.  Numérotation des niveaux : La numérotation des niveaux débute à zéro.

Table des matières Haut

Références

  1. livre Langue du document :fr INFOB321 - Théorie des graphes : JP Leclercq, Cours de Théorie des Graphes et réseaux de Petri (September 2008)

Ces références et liens indiquent des documents consultés lors de la rédaction de cette page, ou qui peuvent apporter un complément d'information, mais les auteurs de ces sources ne peuvent être tenus responsables du contenu de cette page.
L'auteur de ce site est seul responsable de la manière dont sont présentés ici les différents concepts, et des libertés qui sont prises avec les ouvrages de référence. N'oubliez pas que vous devez croiser les informations de sources multiples afin de diminuer les risques d'erreurs.

Table des matières Haut