Fann Functions
Table of Contents
- fann_cascadetrain_on_data — Trains on an entire dataset, for a period of time using the Cascade2 training algorithm
- fann_cascadetrain_on_file — Trains on an entire dataset read from file, for a period of time using the Cascade2 training algorithm
- fann_clear_scaling_params — Clears scaling parameters
- fann_copy — Creates a copy of a fann structure
- fann_create_from_file — Constructs a backpropagation neural network from a configuration file
- fann_create_shortcut_array — Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
- fann_create_shortcut — Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
- fann_create_sparse_array — Creates a standard backpropagation neural network, which is not fully connected using an array of layer sizes
- fann_create_sparse — Creates a standard backpropagation neural network, which is not fully connected
- fann_create_standard_array — Creates a standard fully connected backpropagation neural network using an array of layer sizes
- fann_create_standard — Creates a standard fully connected backpropagation neural network
- fann_create_train_from_callback — Creates the training data struct from a user supplied function
- fann_create_train — Creates an empty training data struct
- fann_descale_input — Scale data in input vector after get it from ann based on previously calculated parameters
- fann_descale_output — Scale data in output vector after get it from ann based on previously calculated parameters
- fann_descale_train — Descale input and output data based on previously calculated parameters
- fann_destroy_train — Destructs the training data
- fann_destroy — Destroys the entire network and properly freeing all the associated memory
- fann_duplicate_train_data — Returns an exact copy of a fann train data
- fann_get_activation_function — Returns the activation function
- fann_get_activation_steepness — Returns the activation steepness for supplied neuron and layer number
- fann_get_bias_array — Get the number of bias in each layer in the network
- fann_get_bit_fail_limit — Returns the bit fail limit used during training
- fann_get_bit_fail — The number of fail bits
- fann_get_cascade_activation_functions_count — Returns the number of cascade activation functions
- fann_get_cascade_activation_functions — Returns the cascade activation functions
- fann_get_cascade_activation_steepnesses_count — The number of activation steepnesses
- fann_get_cascade_activation_steepnesses — Returns the cascade activation steepnesses
- fann_get_cascade_candidate_change_fraction — Returns the cascade candidate change fraction
- fann_get_cascade_candidate_limit — Return the candidate limit
- fann_get_cascade_candidate_stagnation_epochs — Returns the number of cascade candidate stagnation epochs
- fann_get_cascade_max_cand_epochs — Returns the maximum candidate epochs
- fann_get_cascade_max_out_epochs — Returns the maximum out epochs
- fann_get_cascade_min_cand_epochs — Returns the minimum candidate epochs
- fann_get_cascade_min_out_epochs — Returns the minimum out epochs
- fann_get_cascade_num_candidate_groups — Returns the number of candidate groups
- fann_get_cascade_num_candidates — Returns the number of candidates used during training
- fann_get_cascade_output_change_fraction — Returns the cascade output change fraction
- fann_get_cascade_output_stagnation_epochs — Returns the number of cascade output stagnation epochs
- fann_get_cascade_weight_multiplier — Returns the weight multiplier
- fann_get_connection_array — Get connections in the network
- fann_get_connection_rate — Get the connection rate used when the network was created
- fann_get_errno — Returns the last error number
- fann_get_errstr — Returns the last errstr
- fann_get_layer_array — Get the number of neurons in each layer in the network
- fann_get_learning_momentum — Returns the learning momentum
- fann_get_learning_rate — Returns the learning rate
- fann_get_MSE — Reads the mean square error from the network
- fann_get_network_type — Get the type of neural network it was created as
- fann_get_num_input — Get the number of input neurons
- fann_get_num_layers — Get the number of layers in the neural network
- fann_get_num_output — Get the number of output neurons
- fann_get_quickprop_decay — Returns the decay which is a factor that weights should decrease in each iteration during quickprop training
- fann_get_quickprop_mu — Returns the mu factor
- fann_get_rprop_decrease_factor — Returns the increase factor used during RPROP training
- fann_get_rprop_delta_max — Returns the maximum step-size
- fann_get_rprop_delta_min — Returns the minimum step-size
- fann_get_rprop_delta_zero — Returns the initial step-size
- fann_get_rprop_increase_factor — Returns the increase factor used during RPROP training
- fann_get_sarprop_step_error_shift — Returns the sarprop step error shift
- fann_get_sarprop_step_error_threshold_factor — Returns the sarprop step error threshold factor
- fann_get_sarprop_temperature — Returns the sarprop temperature
- fann_get_sarprop_weight_decay_shift — Returns the sarprop weight decay shift
- fann_get_total_connections — Get the total number of connections in the entire network
- fann_get_total_neurons — Get the total number of neurons in the entire network
- fann_get_train_error_function — Returns the error function used during training
- fann_get_train_stop_function — Returns the stop function used during training
- fann_get_training_algorithm — Returns the training algorithm
- fann_init_weights — Initialize the weights using Widrow + Nguyen’s algorithm
- fann_length_train_data — Returns the number of training patterns in the train data
- fann_merge_train_data — Merges the train data
- fann_num_input_train_data — Returns the number of inputs in each of the training patterns in the train data
- fann_num_output_train_data — Returns the number of outputs in each of the training patterns in the train data
- fann_print_error — Prints the error string
- fann_randomize_weights — Give each connection a random weight between min_weight and max_weight
- fann_read_train_from_file — Reads a file that stores training data
- fann_reset_errno — Resets the last error number
- fann_reset_errstr — Resets the last error string
- fann_reset_MSE — Resets the mean square error from the network
- fann_run — Will run input through the neural network
- fann_save_train — Save the training structure to a file
- fann_save — Saves the entire network to a configuration file
- fann_scale_input_train_data — Scales the inputs in the training data to the specified range
- fann_scale_input — Scale data in input vector before feed it to ann based on previously calculated parameters
- fann_scale_output_train_data — Scales the outputs in the training data to the specified range
- fann_scale_output — Scale data in output vector before feed it to ann based on previously calculated parameters
- fann_scale_train_data — Scales the inputs and outputs in the training data to the specified range
- fann_scale_train — Scale input and output data based on previously calculated parameters
- fann_set_activation_function_hidden — Sets the activation function for all of the hidden layers
- fann_set_activation_function_layer — Sets the activation function for all the neurons in the supplied layer
- fann_set_activation_function_output — Sets the activation function for the output layer
- fann_set_activation_function — Sets the activation function for supplied neuron and layer
- fann_set_activation_steepness_hidden — Sets the steepness of the activation steepness for all neurons in the all hidden layers
- fann_set_activation_steepness_layer — Sets the activation steepness for all of the neurons in the supplied layer number
- fann_set_activation_steepness_output — Sets the steepness of the activation steepness in the output layer
- fann_set_activation_steepness — Sets the activation steepness for supplied neuron and layer number
- fann_set_bit_fail_limit — Set the bit fail limit used during training
- fann_set_callback — Sets the callback function for use during training
- fann_set_cascade_activation_functions — Sets the array of cascade candidate activation functions
- fann_set_cascade_activation_steepnesses — Sets the array of cascade candidate activation steepnesses
- fann_set_cascade_candidate_change_fraction — Sets the cascade candidate change fraction
- fann_set_cascade_candidate_limit — Sets the candidate limit
- fann_set_cascade_candidate_stagnation_epochs — Sets the number of cascade candidate stagnation epochs
- fann_set_cascade_max_cand_epochs — Sets the max candidate epochs
- fann_set_cascade_max_out_epochs — Sets the maximum out epochs
- fann_set_cascade_min_cand_epochs — Sets the min candidate epochs
- fann_set_cascade_min_out_epochs — Sets the minimum out epochs
- fann_set_cascade_num_candidate_groups — Sets the number of candidate groups
- fann_set_cascade_output_change_fraction — Sets the cascade output change fraction
- fann_set_cascade_output_stagnation_epochs — Sets the number of cascade output stagnation epochs
- fann_set_cascade_weight_multiplier — Sets the weight multiplier
- fann_set_error_log — Sets where the errors are logged to
- fann_set_input_scaling_params — Calculate input scaling parameters for future use based on training data
- fann_set_learning_momentum — Sets the learning momentum
- fann_set_learning_rate — Sets the learning rate
- fann_set_output_scaling_params — Calculate output scaling parameters for future use based on training data
- fann_set_quickprop_decay — Sets the quickprop decay factor
- fann_set_quickprop_mu — Sets the quickprop mu factor
- fann_set_rprop_decrease_factor — Sets the decrease factor used during RPROP training
- fann_set_rprop_delta_max — Sets the maximum step-size
- fann_set_rprop_delta_min — Sets the minimum step-size
- fann_set_rprop_delta_zero — Sets the initial step-size
- fann_set_rprop_increase_factor — Sets the increase factor used during RPROP training
- fann_set_sarprop_step_error_shift — Sets the sarprop step error shift
- fann_set_sarprop_step_error_threshold_factor — Sets the sarprop step error threshold factor
- fann_set_sarprop_temperature — Sets the sarprop temperature
- fann_set_sarprop_weight_decay_shift — Sets the sarprop weight decay shift
- fann_set_scaling_params — Calculate input and output scaling parameters for future use based on training data
- fann_set_train_error_function — Sets the error function used during training
- fann_set_train_stop_function — Sets the stop function used during training
- fann_set_training_algorithm — Sets the training algorithm
- fann_set_weight_array — Set connections in the network
- fann_set_weight — Set a connection in the network
- fann_shuffle_train_data — Shuffles training data, randomizing the order
- fann_subset_train_data — Returns an copy of a subset of the train data
- fann_test_data — Test a set of training data and calculates the MSE for the training data
- fann_test — Test with a set of inputs, and a set of desired outputs
- fann_train_epoch — Train one epoch with a set of training data
- fann_train_on_data — Trains on an entire dataset for a period of time
- fann_train_on_file — Trains on an entire dataset, which is read from file, for a period of time
- fann_train — Train one iteration with a set of inputs, and a set of desired outputs
English translation
You have asked to visit this site in English. For now, only the interface is translated, but not all the content yet.If you want to help me in translations, your contribution is welcome. All you need to do is register on the site, and send me a message asking me to add you to the group of translators, which will give you the opportunity to translate the pages you want. A link at the bottom of each translated page indicates that you are the translator, and has a link to your profile.
Thank you in advance.
Document created the 30/01/2003, last modified the 26/10/2018
Source of the printed document:https://www.gaudry.be/en/php-rf-ref.fann.html
The infobrol is a personal site whose content is my sole responsibility. The text is available under CreativeCommons license (BY-NC-SA). More info on the terms of use and the author.
References
These references and links indicate documents consulted during the writing of this page, or which may provide additional information, but the authors of these sources can not be held responsible for the content of this page.
The author This site is solely responsible for the way in which the various concepts, and the freedoms that are taken with the reference works, are presented here. Remember that you must cross multiple source information to reduce the risk of errors.