Rechercher dans le manuel MySQL

8.12.1 Optimizing Disk I/O

This section describes ways to configure storage devices when you can devote more and faster storage hardware to the database server. For information about optimizing an InnoDB configuration to improve I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

  • Disk seeks are a huge performance bottleneck. This problem becomes more apparent when the amount of data starts to grow so large that effective caching becomes impossible. For large databases where you access data more or less randomly, you can be sure that you need at least one disk seek to read and a couple of disk seeks to write things. To minimize this problem, use disks with low seek times.

  • Increase the number of available disk spindles (and thereby reduce the seek overhead) by either symlinking files to different disks or striping the disks:

    • Using symbolic links

      This means that, for MyISAM tables, you symlink the index file and data files from their usual location in the data directory to another disk (that may also be striped). This makes both the seek and read times better, assuming that the disk is not used for other purposes as well. See Section 8.12.2, “Using Symbolic Links”.

      Symbolic links are not supported for use with InnoDB tables. However, it is possible to place InnoDB data and log files on different physical disks. For more information, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

    • Striping

      Striping means that you have many disks and put the first block on the first disk, the second block on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This means if your normal data size is less than the stripe size (or perfectly aligned), you get much better performance. Striping is very dependent on the operating system and the stripe size, so benchmark your application with different stripe sizes. See Section 8.13.2, “Using Your Own Benchmarks”.

      The speed difference for striping is very dependent on the parameters. Depending on how you set the striping parameters and number of disks, you may get differences measured in orders of magnitude. You have to choose to optimize for random or sequential access.

  • For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need 2 × N drives to hold N drives of data. This is probably the best option if you have the money for it. However, you may also have to invest in some volume-management software to handle it efficiently.

  • A good option is to vary the RAID level according to how critical a type of data is. For example, store semi-important data that can be regenerated on a RAID 0 disk, but store really important data such as host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have many writes, due to the time required to update the parity bits.

  • You can also set the parameters for the file system that the database uses:

    If you do not need to know when files were last accessed (which is not really useful on a database server), you can mount your file systems with the -o noatime option. That skips updates to the last access time in inodes on the file system, which avoids some disk seeks.

    On many operating systems, you can set a file system to be updated asynchronously by mounting it with the -o async option. If your computer is reasonably stable, this should give you better performance without sacrificing too much reliability. (This flag is on by default on Linux.)

Using NFS with MySQL

Caution is advised when considering using NFS with MySQL. Potential issues, which vary by operating system and NFS version, include:

  • MySQL data and log files placed on NFS volumes becoming locked and unavailable for use. Locking issues may occur in cases where multiple instances of MySQL access the same data directory or where MySQL is shut down improperly, due to a power outage, for example. NFS version 4 addresses underlying locking issues with the introduction of advisory and lease-based locking. However, sharing a data directory among MySQL instances is not recommended.

  • Data inconsistencies introduced due to messages received out of order or lost network traffic. To avoid this issue, use TCP with hard and intr mount options.

  • Maximum file size limitations. NFS Version 2 clients can only access the lowest 2GB of a file (signed 32 bit offset). NFS Version 3 clients support larger files (up to 64 bit offsets). The maximum supported file size also depends on the local file system of the NFS server.

Using NFS within a professional SAN environment or other storage system tends to offer greater reliability than using NFS outside of such an environment. However, NFS within a SAN environment may be slower than directly attached or bus-attached non-rotational storage.

If you choose to use NFS, NFS Version 4 or later is recommended, as is testing your NFS setup thoroughly before deploying into a production environment.


Find a PHP function

Document created the 26/06/2006, last modified the 26/10/2018
Source of the printed document:https://www.gaudry.be/en/mysql-rf-disk-issues.html

The infobrol is a personal site whose content is my sole responsibility. The text is available under CreativeCommons license (BY-NC-SA). More info on the terms of use and the author.

References

  1. View the html document Language of the document:en Manuel MySQL : https://dev.mysql.com/

These references and links indicate documents consulted during the writing of this page, or which may provide additional information, but the authors of these sources can not be held responsible for the content of this page.
The author This site is solely responsible for the way in which the various concepts, and the freedoms that are taken with the reference works, are presented here. Remember that you must cross multiple source information to reduce the risk of errors.

Contents Haut