Notations mathématiques
Symbole | Domaine | Nom | Description | Exemple |
Symbole | Domaine | Nom | Description | Exemple |
˜ | Ensembles | Relation d'équivalence | ... est équivalent à ... | m ≤ n*(n-1) ˜ m ≤ n2 lorsque n est très grand |
{ , } | Ensembles | Ensemble en extension | L'ensemble de ... | {1, 2, 3} est l'ensemble des valeurs 1, 2, et 3 |
∅ | Ensembles | Ensemble vide | L'ensemble vide | ∅ = {} |
∈ | Ensembles | Appartenance à un ensemble | ... est un élément de ... | 3 ∈ {1, 2, 3, 4} |
∉ | Ensembles | Non appartenance à un ensemble | ... n'est pas un élément de ... | 5∉{1, 2, 3, 4} |
\ | Ensembles | Différence | ... moins ... | A\B désigne l'ensemble de tous les éléments de A qui n'appartiennent pas à B {1,3,4,6,8}∪{2,3,5,6} = {1,4,8} |
∩ | Ensembles | Intersection | ... inter ... Correspond au "et" logique | A∩B désigne l'ensemble des éléments qui appartiennent à la fois à A et à B {1,3,4,6,8}∪{2,3,5,6} = {3,6} |
∪ | Ensembles | Réunion | ... union ... Correspond au "ou inclusif" logique | ∀x, x∈A∪B⇔(x∈A)∨(x∈B) A∪B désigne l'ensemble qui contient tous les éléments de A et de B {1,3,4,6,8}∪{2,3,5,6} = {1,2,3,4,5,6,8} |
⊂ | Ensembles | Sous-ensemble | ... est compris dans ... | {1,2} ⊂ {1,2,3} |
⊃ | Ensembles | Sur-ensemble | ... contient ... | {1,2,3} ⊃ {1,2} |
⊄ | Ensembles | ... n'est pas compris dans ... | {1,2,3} ⊄ {4,5,6} | |
⊆ | Ensembles | Sous-ensemble | ... est compris dans ou est égal à ... | {1,2}⊆{1,2,3} {1,2}⊆{1,2} |
⊇ | Ensembles | Sur-ensemble | ... contient ou est égal à ... | {1,2,3}⊇{1,2} {1,2}⊇{1,2} |
∀ | Logique | Quantificateur universel | Pour tout... Quel que soit... | ∀x ∈ E, x>0 Pour tout x appartenant à E, x est plus grand que zéro |
∃ | Logique | Quantificateur existentiel | Il existe au moins un ... tel que | ∃val : (1, val) ∈ liste Il existe au moins une valeur val tel que val est à l'indice 1 dans la liste |
Logique | Quantificateur existentiel négatif | Il n'existe pas de ... tel que | val : (0,val) ∈ liste Il n'existe pas de valeur val tel que val est à l'indice zéro dans la liste | |
∧ | Logique | Conjonction logique | Correspond au "et" logique | A=B∧C A est true si B est true ET si C est true |
∨ | Logique | Disjonction logique | Correspond au "ou inclusif" logique | A=B∨C A est true si B est true OU si C est true OU si B et C sont true |
¬ | Logique | Négation logique | Correspond au "non" logique | A=<¬B A est true si B est false et A est false si B est true |
⊕ | Logique | somme directe | ||
⊕ | Logique | Disjonction logique | produit vectoriel Correspond au "ou exclusif" logique (XOR) | A=B⊕C A est true si B est true OU si C est true A est false si B ET C sont true |
⇒ | Logique | Implication | A implique B si A, alors B | |
⇔ | Logique | équivalence logique | A équivaut à B A existe si et seulement si B existe | |
∂ | Généralités | partiellement | ||
∋ | Généralités | contient comme élément | ||
∏ | Généralités | Produit | produit de .. pour .. de .. à .. | |
∑ | Généralités | somme | ||
√ | Généralités | racine carrée | ||
∝ | Généralités | Proportionnalité | ... est proportionnel à ... | |
∞ | Généralités | infini | ||
∫ | Généralités | intégral | ||
∴ | Généralités | c'est pourquoi | ||
∼ | Généralités | semblable à | ||
≅ | Généralités | sensiblement égal à | ||
≈ | Généralités | presque égal à | ||
≠ | Généralités | Non égalité (Différence) | ... n'est pas égal à ... | 1 ≠ 1 ⇒ false 1 ≠ 2 <⇒ true |
= | Généralités | Egalité | ... est strictement égal à ... | 1 = 1 ⇒ true 1 = 2 ⇒ false |
≡ | Généralités | identique à | ||
< | Généralités | Comparaison | ... est strictement plus petit que... | 1 < 1 ⇒ false 1 < 2 ⇒ true 2 < 1 ⇒ false |
≤ | Généralités | Comparaison | ... est plus petit ou égal à ... | 1 ≤ 1 ⇒ true 1 ≤ 2 ⇒ true 2 ≤ 1 ⇒ false |
> | Généralités | Comparaison | ... est strictement plus grand que... | 1 > 1 ⇒ false 1 > 2 ⇒ false 2 > 1 ⇒ true |
≥ | Généralités | Comparaison | ... est plus grand ou égal à ... | 1≥1 ⇒ true 1≥2 ⇒ false 2 ≥ 1 ⇒ true |
f:X→Y | Généralités | Fonction | de ... vers ... a pour ensemble de définition ... et pour ensemble d'arrivée ... d'origine ... pour but ... | f:X→Y signifie que la fonction f a pour origine X et pour but Y. |
⌊x⌋ | Généralités | Partie entière par excès Borne supérieure | ||
⌈x⌉ | Généralités | Partie entière Borne inférieure | ||
˜ | Statistiques | Distribution de probabilité |
Notations ensembliste
Quelques exemple supplémentaires sur la notation ensembliste...
Notation | Description |
Notation | Description |
{x | P(x)} | Ensemble des éléments x vérifiant la propriété P |
∀ x : | Pour tout x tel que... |
∃y : | Il existe y tel que... |
a∈A | L'élément a appartient à l'ensemble A |
a∉A | L'élément a n'appartient pas à l'ensemble A |
A⊂B;A⊆B | L'ensemble A est inclu dans l'ensemble B : ∀a∈A, a∈B |
A∩B=C | L'ensemble C est l'intersection de A et de B : ∀c∈C, c∈A ∧ c∈B |
A∪B=D | L'ensemble D est l'union de A et de B : ∀d∈D, d∈A ∨ d∈B |
A-B=E ; A\B =E | L'ensemble E représente les éléments de A moins ceux de B : ∀ e∈E, e∈A ∧ e∉B |
English translation
You have asked to visit this site in English. For now, only the interface is translated, but not all the content yet.If you want to help me in translations, your contribution is welcome. All you need to do is register on the site, and send me a message asking me to add you to the group of translators, which will give you the opportunity to translate the pages you want. A link at the bottom of each translated page indicates that you are the translator, and has a link to your profile.
Thank you in advance.
Document created the 08/11/2009, last modified the 28/10/2018
Source of the printed document:https://www.gaudry.be/en/math-notations.html
The infobrol is a personal site whose content is my sole responsibility. The text is available under CreativeCommons license (BY-NC-SA). More info on the terms of use and the author.
Useful links
References
These references and links indicate documents consulted during the writing of this page, or which may provide additional information, but the authors of these sources can not be held responsible for the content of this page.
The author This site is solely responsible for the way in which the various concepts, and the freedoms that are taken with the reference works, are presented here. Remember that you must cross multiple source information to reduce the risk of errors.