Package javax.sql
See: Description
-
Interface Summary Interface Description CommonDataSource Interface that defines the methods which are common betweenDataSource
,XADataSource
andConnectionPoolDataSource
.ConnectionEventListener An object that registers to be notified of events generated by aPooledConnection
object.ConnectionPoolDataSource A factory forPooledConnection
objects.DataSource A factory for connections to the physical data source that thisDataSource
object represents.PooledConnection An object that provides hooks for connection pool management.RowSet The interface that adds support to the JDBC API for the JavaBeansTM component model.RowSetInternal The interface that aRowSet
object implements in order to present itself to aRowSetReader
orRowSetWriter
object.RowSetListener An interface that must be implemented by a component that wants to be notified when a significant event happens in the life of aRowSet
object.RowSetMetaData An object that contains information about the columns in aRowSet
object.RowSetReader The facility that a disconnectedRowSet
object calls on to populate itself with rows of data.RowSetWriter An object that implements theRowSetWriter
interface, called a writer.StatementEventListener An object that registers to be notified of events that occur on PreparedStatements that are in the Statement pool.XAConnection An object that provides support for distributed transactions.XADataSource A factory forXAConnection
objects that is used internally. -
Class Summary Class Description ConnectionEvent AnEvent
object that provides information about the source of a connection-related event.RowSetEvent AnEvent
object generated when an event occurs to aRowSet
object.StatementEvent AStatementEvent
is sent to allStatementEventListener
s which were registered with aPooledConnection
.
Package javax.sql Description
java.sql
package and, as of the version 1.4 release, is included in the
Java Platform, Standard Edition
(Java SETM).
It remains an essential part of the Java Platform, Enterprise Edition
(Java EETM).
The javax.sql
package provides for the following:
- The
DataSource
interface as an alternative to theDriverManager
for establishing a connection with a data source - Connection pooling and Statement pooling
- Distributed transactions
- Rowsets
Applications use the DataSource
and RowSet
APIs directly, but the connection pooling and distributed transaction
APIs are used internally by the middle-tier infrastructure.
Using a DataSource
Object to Make a Connection
The javax.sql
package provides the preferred
way to make a connection with a data source. The DriverManager
class, the original mechanism, is still valid, and code using it will
continue to run. However, the newer DataSource
mechanism
is preferred because it offers many advantages over the
DriverManager
mechanism.
These are the main advantages of using a DataSource
object to
make a connection:
- Changes can be made to a data source's properties, which means that it is not necessary to make changes in application code when something about the data source or driver changes.
- Connection and Statement pooling and distributed transactions are available
through a
DataSource
object that is implemented to work with the middle-tier infrastructure. Connections made through theDriverManager
do not have connection and statement pooling or distributed transaction capabilities.
Driver vendors provide DataSource
implementations. A
particular DataSource
object represents a particular
physical data source, and each connection the DataSource
object
creates is a connection to that physical data source.
A logical name for the data source is registered with a naming service that
uses the Java Naming and Directory InterfaceTM
(JNDI) API, usually by a system administrator or someone performing the
duties of a system administrator. An application can retrieve the
DataSource
object it wants by doing a lookup on the logical
name that has been registered for it. The application can then use the
DataSource
object to create a connection to the physical data
source it represents.
A DataSource
object can be implemented to work with the
middle tier infrastructure so that the connections it produces will be
pooled for reuse. An application that uses such a DataSource
implementation will automatically get a connection that participates in
connection pooling.
A DataSource
object can also be implemented to work with the
middle tier infrastructure so that the connections it produces can be
used for distributed transactions without any special coding.
Connection Pooling and Statement Pooling
Connections made via aDataSource
object that is implemented to work with a middle tier connection pool manager
will participate in connection pooling. This can improve performance
dramatically because creating new connections is very expensive.
Connection pooling allows a connection to be used and reused,
thus cutting down substantially on the number of new connections
that need to be created.
Connection pooling is totally transparent. It is done automatically
in the middle tier of a Java EE configuration, so from an application's
viewpoint, no change in code is required. An application simply uses
the DataSource.getConnection
method to get the pooled
connection and uses it the same way it uses any Connection
object.
The classes and interfaces used for connection pooling are:
ConnectionPoolDataSource
PooledConnection
ConnectionEvent
ConnectionEventListener
StatementEvent
StatementEventListener
ConnectionPoolDataSource
object
is called on to create a PooledConnection
object, the
connection pool manager will register as a ConnectionEventListener
object with the new PooledConnection
object. When the connection
is closed or there is an error, the connection pool manager (being a listener)
gets a notification that includes a ConnectionEvent
object.
If the connection pool manager supports Statement
pooling, for
PreparedStatements
, which can be determined by invoking the method
DatabaseMetaData.supportsStatementPooling
, the
connection pool manager will register as a StatementEventListener
object with the new PooledConnection
object. When the
PreparedStatement
is closed or there is an error, the connection
pool manager (being a listener)
gets a notification that includes a StatementEvent
object.
Distributed Transactions
As with pooled connections, connections made via aDataSource
object that is implemented to work with the middle tier infrastructure
may participate in distributed transactions. This gives an application
the ability to involve data sources on multiple servers in a single
transaction.
The classes and interfaces used for distributed transactions are:
XADataSource
XAConnection
The XAConnection
interface is derived from the
PooledConnection
interface, so what applies to a pooled connection
also applies to a connection that is part of a distributed transaction.
A transaction manager in the middle tier handles everything transparently.
The only change in application code is that an application cannot do anything
that would interfere with the transaction manager's handling of the transaction.
Specifically, an application cannot call the methods Connection.commit
or Connection.rollback
, and it cannot set the connection to be in
auto-commit mode (that is, it cannot call
Connection.setAutoCommit(true)
).
An application does not need to do anything special to participate in a
distributed transaction.
It simply creates connections to the data sources it wants to use via
the DataSource.getConnection
method, just as it normally does.
The transaction manager manages the transaction behind the scenes. The
XADataSource
interface creates XAConnection
objects, and
each XAConnection
object creates an XAResource
object
that the transaction manager uses to manage the connection.
Rowsets
TheRowSet
interface works with various other classes and
interfaces behind the scenes. These can be grouped into three categories.
- Event Notification
RowSetListener
ARowSet
object is a JavaBeansTM component because it has properties and participates in the JavaBeans event notification mechanism. TheRowSetListener
interface is implemented by a component that wants to be notified about events that occur to a particularRowSet
object. Such a component registers itself as a listener with a rowset via theRowSet.addRowSetListener
method.When the
RowSet
object changes one of its rows, changes all of it rows, or moves its cursor, it also notifies each listener that is registered with it. The listener reacts by carrying out its implementation of the notification method called on it.RowSetEvent
As part of its internal notification process, aRowSet
object creates an instance ofRowSetEvent
and passes it to the listener. The listener can use thisRowSetEvent
object to find out which rowset had the event.
- Metadata
RowSetMetaData
This interface, derived from theResultSetMetaData
interface, provides information about the columns in aRowSet
object. An application can useRowSetMetaData
methods to find out how many columns the rowset contains and what kind of data each column can contain.The
RowSetMetaData
interface provides methods for setting the information about columns, but an application would not normally use these methods. When an application calls theRowSet
methodexecute
, theRowSet
object will contain a new set of rows, and itsRowSetMetaData
object will have been internally updated to contain information about the new columns.
- The Reader/Writer Facility
ARowSet
object that implements theRowSetInternal
interface can call on theRowSetReader
object associated with it to populate itself with data. It can also call on theRowSetWriter
object associated with it to write any changes to its rows back to the data source from which it originally got the rows. A rowset that remains connected to its data source does not need to use a reader and writer because it can simply operate on the data source directly.RowSetInternal
By implementing theRowSetInternal
interface, aRowSet
object gets access to its internal state and is able to call on its reader and writer. A rowset keeps track of the values in its current rows and of the values that immediately preceded the current ones, referred to as the original values. A rowset also keeps track of (1) the parameters that have been set for its command and (2) the connection that was passed to it, if any. A rowset uses theRowSetInternal
methods behind the scenes to get access to this information. An application does not normally invoke these methods directly.RowSetReader
A disconnectedRowSet
object that has implemented theRowSetInternal
interface can call on its reader (theRowSetReader
object associated with it) to populate it with data. When an application calls theRowSet.execute
method, that method calls on the rowset's reader to do much of the work. Implementations can vary widely, but generally a reader makes a connection to the data source, reads data from the data source and populates the rowset with it, and closes the connection. A reader may also update theRowSetMetaData
object for its rowset. The rowset's internal state is also updated, either by the reader or directly by the methodRowSet.execute
.RowSetWriter
A disconnectedRowSet
object that has implemented theRowSetInternal
interface can call on its writer (theRowSetWriter
object associated with it) to write changes back to the underlying data source. Implementations may vary widely, but generally, a writer will do the following:- Make a connection to the data source
- Check to see whether there is a conflict, that is, whether a value that has been changed in the rowset has also been changed in the data source
- Write the new values to the data source if there is no conflict
- Close the connection
The RowSet
interface may be implemented in any number of
ways, and anyone may write an implementation. Developers are encouraged
to use their imaginations in coming up with new ways to use rowsets.
IMPORTANT NOTE: Code that uses API marked "Since 1.6" must be run using a JDBC technology driver that implements the JDBC 4.0 API. You must check your driver documentation to be sure that it implements the particular features you want to use.
Package Specification
Related Documentation
The Java Series book published by Addison-Wesley Longman provides detailed information about the classes and interfaces in thejavax.sql
package:
- Since:
- 1.4
Document created the 11/06/2005, last modified the 04/03/2020
Source of the printed document:https://www.gaudry.be/en/java-api-rf-javax/sql/package-summary.html
The infobrol is a personal site whose content is my sole responsibility. The text is available under CreativeCommons license (BY-NC-SA). More info on the terms of use and the author.
References
These references and links indicate documents consulted during the writing of this page, or which may provide additional information, but the authors of these sources can not be held responsible for the content of this page.
The author This site is solely responsible for the way in which the various concepts, and the freedoms that are taken with the reference works, are presented here. Remember that you must cross multiple source information to reduce the risk of errors.