java.util.concurrent.locks

Class ReentrantReadWriteLock

  • All Implemented Interfaces:
    Serializable, ReadWriteLock

    public class ReentrantReadWriteLock
    extends Object
    implements ReadWriteLock, Serializable
    An implementation of ReadWriteLock supporting similar semantics to ReentrantLock.

    This class has the following properties:

    • Acquisition order

      This class does not impose a reader or writer preference ordering for lock access. However, it does support an optional fairness policy.

      Non-fair mode (default)
      When constructed as non-fair (the default), the order of entry to the read and write lock is unspecified, subject to reentrancy constraints. A nonfair lock that is continuously contended may indefinitely postpone one or more reader or writer threads, but will normally have higher throughput than a fair lock.

      Fair mode
      When constructed as fair, threads contend for entry using an approximately arrival-order policy. When the currently held lock is released either the longest-waiting single writer thread will be assigned the write lock, or if there is a group of reader threads waiting longer than all waiting writer threads, that group will be assigned the read lock.

      A thread that tries to acquire a fair read lock (non-reentrantly) will block if either the write lock is held, or there is a waiting writer thread. The thread will not acquire the read lock until after the oldest currently waiting writer thread has acquired and released the write lock. Of course, if a waiting writer abandons its wait, leaving one or more reader threads as the longest waiters in the queue with the write lock free, then those readers will be assigned the read lock.

      A thread that tries to acquire a fair write lock (non-reentrantly) will block unless both the read lock and write lock are free (which implies there are no waiting threads). (Note that the non-blocking ReentrantReadWriteLock.ReadLock.tryLock() and ReentrantReadWriteLock.WriteLock.tryLock() methods do not honor this fair setting and will acquire the lock if it is possible, regardless of waiting threads.)

    • Reentrancy

      This lock allows both readers and writers to reacquire read or write locks in the style of a ReentrantLock. Non-reentrant readers are not allowed until all write locks held by the writing thread have been released.

      Additionally, a writer can acquire the read lock, but not vice-versa. Among other applications, reentrancy can be useful when write locks are held during calls or callbacks to methods that perform reads under read locks. If a reader tries to acquire the write lock it will never succeed.

    • Lock downgrading

      Reentrancy also allows downgrading from the write lock to a read lock, by acquiring the write lock, then the read lock and then releasing the write lock. However, upgrading from a read lock to the write lock is not possible.

    • Interruption of lock acquisition

      The read lock and write lock both support interruption during lock acquisition.

    • Condition support

      The write lock provides a Condition implementation that behaves in the same way, with respect to the write lock, as the Condition implementation provided by ReentrantLock.newCondition() does for ReentrantLock. This Condition can, of course, only be used with the write lock.

      The read lock does not support a Condition and readLock().newCondition() throws UnsupportedOperationException.

    • Instrumentation

      This class supports methods to determine whether locks are held or contended. These methods are designed for monitoring system state, not for synchronization control.

    Serialization of this class behaves in the same way as built-in locks: a deserialized lock is in the unlocked state, regardless of its state when serialized.

    Sample usages. Here is a code sketch showing how to perform lock downgrading after updating a cache (exception handling is particularly tricky when handling multiple locks in a non-nested fashion):

     class CachedData {
       Object data;
       volatile boolean cacheValid;
       final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    
       void processCachedData() {
         rwl.readLock().lock();
         if (!cacheValid) {
            // Must release read lock before acquiring write lock
            rwl.readLock().unlock();
            rwl.writeLock().lock();
            try {
              // Recheck state because another thread might have
              // acquired write lock and changed state before we did.
              if (!cacheValid) {
                data = ...
                cacheValid = true;
              }
              // Downgrade by acquiring read lock before releasing write lock
              rwl.readLock().lock();
            } finally {
              rwl.writeLock().unlock(); // Unlock write, still hold read
            }
         }
    
         try {
           use(data);
         } finally {
           rwl.readLock().unlock();
         }
       }
     }
    ReentrantReadWriteLocks can be used to improve concurrency in some uses of some kinds of Collections. This is typically worthwhile only when the collections are expected to be large, accessed by more reader threads than writer threads, and entail operations with overhead that outweighs synchronization overhead. For example, here is a class using a TreeMap that is expected to be large and concurrently accessed.
    class RWDictionary {
        private final Map<String, Data> m = new TreeMap<String, Data>();
        private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
        private final Lock r = rwl.readLock();
        private final Lock w = rwl.writeLock();
    
        public Data get(String key) {
            r.lock();
            try { return m.get(key); }
            finally { r.unlock(); }
        }
        public String[] allKeys() {
            r.lock();
            try { return m.keySet().toArray(); }
            finally { r.unlock(); }
        }
        public Data put(String key, Data value) {
            w.lock();
            try { return m.put(key, value); }
            finally { w.unlock(); }
        }
        public void clear() {
            w.lock();
            try { m.clear(); }
            finally { w.unlock(); }
        }
     }

    Implementation Notes

    This lock supports a maximum of 65535 recursive write locks and 65535 read locks. Attempts to exceed these limits result in Error throws from locking methods.

    Since:
    1.5
    See Also:
    Serialized Form
    • Constructor Detail

      • ReentrantReadWriteLock

        public ReentrantReadWriteLock()
        Creates a new ReentrantReadWriteLock with default (nonfair) ordering properties.
      • ReentrantReadWriteLock

        public ReentrantReadWriteLock(boolean fair)
        Creates a new ReentrantReadWriteLock with the given fairness policy.
        Parameters:
        fair - true if this lock should use a fair ordering policy
    • Method Detail

      • isFair

        public final boolean isFair()
        Returns true if this lock has fairness set true.
        Returns:
        true if this lock has fairness set true
      • getOwner

        protected Thread getOwner()
        Returns the thread that currently owns the write lock, or null if not owned. When this method is called by a thread that is not the owner, the return value reflects a best-effort approximation of current lock status. For example, the owner may be momentarily null even if there are threads trying to acquire the lock but have not yet done so. This method is designed to facilitate construction of subclasses that provide more extensive lock monitoring facilities.
        Returns:
        the owner, or null if not owned
      • getReadLockCount

        public int getReadLockCount()
        Queries the number of read locks held for this lock. This method is designed for use in monitoring system state, not for synchronization control.
        Returns:
        the number of read locks held.
      • isWriteLocked

        public boolean isWriteLocked()
        Queries if the write lock is held by any thread. This method is designed for use in monitoring system state, not for synchronization control.
        Returns:
        true if any thread holds the write lock and false otherwise
      • isWriteLockedByCurrentThread

        public boolean isWriteLockedByCurrentThread()
        Queries if the write lock is held by the current thread.
        Returns:
        true if the current thread holds the write lock and false otherwise
      • getWriteHoldCount

        public int getWriteHoldCount()
        Queries the number of reentrant write holds on this lock by the current thread. A writer thread has a hold on a lock for each lock action that is not matched by an unlock action.
        Returns:
        the number of holds on the write lock by the current thread, or zero if the write lock is not held by the current thread
      • getReadHoldCount

        public int getReadHoldCount()
        Queries the number of reentrant read holds on this lock by the current thread. A reader thread has a hold on a lock for each lock action that is not matched by an unlock action.
        Returns:
        the number of holds on the read lock by the current thread, or zero if the read lock is not held by the current thread
        Since:
        1.6
      • getQueuedWriterThreads

        protected Collection<Thread> getQueuedWriterThreads()
        Returns a collection containing threads that may be waiting to acquire the write lock. Because the actual set of threads may change dynamically while constructing this result, the returned collection is only a best-effort estimate. The elements of the returned collection are in no particular order. This method is designed to facilitate construction of subclasses that provide more extensive lock monitoring facilities.
        Returns:
        the collection of threads
      • getQueuedReaderThreads

        protected Collection<Thread> getQueuedReaderThreads()
        Returns a collection containing threads that may be waiting to acquire the read lock. Because the actual set of threads may change dynamically while constructing this result, the returned collection is only a best-effort estimate. The elements of the returned collection are in no particular order. This method is designed to facilitate construction of subclasses that provide more extensive lock monitoring facilities.
        Returns:
        the collection of threads
      • hasQueuedThreads

        public final boolean hasQueuedThreads()
        Queries whether any threads are waiting to acquire the read or write lock. Note that because cancellations may occur at any time, a true return does not guarantee that any other thread will ever acquire a lock. This method is designed primarily for use in monitoring of the system state.
        Returns:
        true if there may be other threads waiting to acquire the lock
      • hasQueuedThread

        public final boolean hasQueuedThread(Thread thread)
        Queries whether the given thread is waiting to acquire either the read or write lock. Note that because cancellations may occur at any time, a true return does not guarantee that this thread will ever acquire a lock. This method is designed primarily for use in monitoring of the system state.
        Parameters:
        thread - the thread
        Returns:
        true if the given thread is queued waiting for this lock
        Throws:
        NullPointerException - if the thread is null
      • getQueueLength

        public final int getQueueLength()
        Returns an estimate of the number of threads waiting to acquire either the read or write lock. The value is only an estimate because the number of threads may change dynamically while this method traverses internal data structures. This method is designed for use in monitoring of the system state, not for synchronization control.
        Returns:
        the estimated number of threads waiting for this lock
      • getQueuedThreads

        protected Collection<Thread> getQueuedThreads()
        Returns a collection containing threads that may be waiting to acquire either the read or write lock. Because the actual set of threads may change dynamically while constructing this result, the returned collection is only a best-effort estimate. The elements of the returned collection are in no particular order. This method is designed to facilitate construction of subclasses that provide more extensive monitoring facilities.
        Returns:
        the collection of threads
      • hasWaiters

        public boolean hasWaiters(Condition condition)
        Queries whether any threads are waiting on the given condition associated with the write lock. Note that because timeouts and interrupts may occur at any time, a true return does not guarantee that a future signal will awaken any threads. This method is designed primarily for use in monitoring of the system state.
        Parameters:
        condition - the condition
        Returns:
        true if there are any waiting threads
        Throws:
        IllegalMonitorStateException - if this lock is not held
        IllegalArgumentException - if the given condition is not associated with this lock
        NullPointerException - if the condition is null
      • getWaitQueueLength

        public int getWaitQueueLength(Condition condition)
        Returns an estimate of the number of threads waiting on the given condition associated with the write lock. Note that because timeouts and interrupts may occur at any time, the estimate serves only as an upper bound on the actual number of waiters. This method is designed for use in monitoring of the system state, not for synchronization control.
        Parameters:
        condition - the condition
        Returns:
        the estimated number of waiting threads
        Throws:
        IllegalMonitorStateException - if this lock is not held
        IllegalArgumentException - if the given condition is not associated with this lock
        NullPointerException - if the condition is null
      • getWaitingThreads

        protected Collection<Thread> getWaitingThreads(Condition condition)
        Returns a collection containing those threads that may be waiting on the given condition associated with the write lock. Because the actual set of threads may change dynamically while constructing this result, the returned collection is only a best-effort estimate. The elements of the returned collection are in no particular order. This method is designed to facilitate construction of subclasses that provide more extensive condition monitoring facilities.
        Parameters:
        condition - the condition
        Returns:
        the collection of threads
        Throws:
        IllegalMonitorStateException - if this lock is not held
        IllegalArgumentException - if the given condition is not associated with this lock
        NullPointerException - if the condition is null
      • toString

        public String toString()
        Returns a string identifying this lock, as well as its lock state. The state, in brackets, includes the String "Write locks =" followed by the number of reentrantly held write locks, and the String "Read locks =" followed by the number of held read locks.
        Overrides:
        toString in class Object
        Returns:
        a string identifying this lock, as well as its lock state

Document created the 11/06/2005, last modified the 04/03/2020
Source of the printed document:https://www.gaudry.be/en/java-api-rf-java/util/concurrent/locks/reentrantreadwritelock.html

The infobrol is a personal site whose content is my sole responsibility. The text is available under CreativeCommons license (BY-NC-SA). More info on the terms of use and the author.

References

  1. View the html document Language of the document:fr Manuel PHP : https://docs.oracle.com

These references and links indicate documents consulted during the writing of this page, or which may provide additional information, but the authors of these sources can not be held responsible for the content of this page.
The author This site is solely responsible for the way in which the various concepts, and the freedoms that are taken with the reference works, are presented here. Remember that you must cross multiple source information to reduce the risk of errors.

Contents Haut