- java.lang.Object
-
- java.security.spec.ECFieldF2m
-
-
Constructor Summary
Constructors Constructor and Description ECFieldF2m(int m)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with normal basis.ECFieldF2m(int m, BigInteger rp)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with polynomial basis.ECFieldF2m(int m, int[] ks)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with polynomial basis.
-
Method Summary
Methods Modifier and Type Method and Description boolean
equals(Object obj)
Compares this finite field for equality with the specified object.int
getFieldSize()
Returns the field size in bits which ism
for this characteristic 2 finite field.int
getM()
Returns the valuem
of this characteristic 2 finite field.int[]
getMidTermsOfReductionPolynomial()
Returns an integer array which contains the order of the middle term(s) of the reduction polynomial for polynomial basis or null for normal basis.BigInteger
getReductionPolynomial()
Returns a BigInteger whose i-th bit corresponds to the i-th coefficient of the reduction polynomial for polynomial basis or null for normal basis.int
hashCode()
Returns a hash code value for this characteristic 2 finite field.
-
-
-
Constructor Detail
-
ECFieldF2m
public ECFieldF2m(int m)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with normal basis.- Parameters:
m
- with 2^m
being the number of elements.- Throws:
IllegalArgumentException
- ifm
is not positive.
-
ECFieldF2m
public ECFieldF2m(int m, BigInteger rp)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with polynomial basis. The reduction polynomial for this field is based onrp
whose i-th bit correspondes to the i-th coefficient of the reduction polynomial.Note: A valid reduction polynomial is either a trinomial (X^
m
+ X^k
+ 1 withm
>k
>= 1) or a pentanomial (X^m
+ X^k3
+ X^k2
+ X^k1
+ 1 withm
>k3
>k2
>k1
>= 1).- Parameters:
m
- with 2^m
being the number of elements.rp
- the BigInteger whose i-th bit corresponds to the i-th coefficient of the reduction polynomial.- Throws:
NullPointerException
- ifrp
is null.IllegalArgumentException
- ifm
is not positive, orrp
does not represent a valid reduction polynomial.
-
ECFieldF2m
public ECFieldF2m(int m, int[] ks)
Creates an elliptic curve characteristic 2 finite field which has 2^m
elements with polynomial basis. The reduction polynomial for this field is based onks
whose content contains the order of the middle term(s) of the reduction polynomial. Note: A valid reduction polynomial is either a trinomial (X^m
+ X^k
+ 1 withm
>k
>= 1) or a pentanomial (X^m
+ X^k3
+ X^k2
+ X^k1
+ 1 withm
>k3
>k2
>k1
>= 1), soks
should have length 1 or 3.- Parameters:
m
- with 2^m
being the number of elements.ks
- the order of the middle term(s) of the reduction polynomial. Contents of this array are copied to protect against subsequent modification.- Throws:
NullPointerException
- ifks
is null.IllegalArgumentException
- ifm
is not positive, or the length ofks
is neither 1 nor 3, or values inks
are not betweenm
-1 and 1 (inclusive) and in descending order.
-
-
Method Detail
-
getFieldSize
public int getFieldSize()
Returns the field size in bits which ism
for this characteristic 2 finite field.- Specified by:
getFieldSize
in interfaceECField
- Returns:
- the field size in bits.
-
getM
public int getM()
Returns the valuem
of this characteristic 2 finite field.- Returns:
m
with 2^m
being the number of elements.
-
getReductionPolynomial
public BigInteger getReductionPolynomial()
Returns a BigInteger whose i-th bit corresponds to the i-th coefficient of the reduction polynomial for polynomial basis or null for normal basis.- Returns:
- a BigInteger whose i-th bit corresponds to the i-th coefficient of the reduction polynomial for polynomial basis or null for normal basis.
-
getMidTermsOfReductionPolynomial
public int[] getMidTermsOfReductionPolynomial()
Returns an integer array which contains the order of the middle term(s) of the reduction polynomial for polynomial basis or null for normal basis.- Returns:
- an integer array which contains the order of the middle term(s) of the reduction polynomial for polynomial basis or null for normal basis. A new array is returned each time this method is called.
-
equals
public boolean equals(Object obj)
Compares this finite field for equality with the specified object.- Overrides:
equals
in classObject
- Parameters:
obj
- the object to be compared.- Returns:
- true if
obj
is an instance of ECFieldF2m and bothm
and the reduction polynomial match, false otherwise. - See Also:
Object.hashCode()
,HashMap
-
hashCode
public int hashCode()
Returns a hash code value for this characteristic 2 finite field.- Overrides:
hashCode
in classObject
- Returns:
- a hash code value.
- See Also:
Object.equals(java.lang.Object)
,System.identityHashCode(java.lang.Object)
-
-
Document created the 11/06/2005, last modified the 04/03/2020
Source of the printed document:https://www.gaudry.be/en/java-api-rf-java/security/spec/ECFieldF2m.html
The infobrol is a personal site whose content is my sole responsibility. The text is available under CreativeCommons license (BY-NC-SA). More info on the terms of use and the author.
References
These references and links indicate documents consulted during the writing of this page, or which may provide additional information, but the authors of these sources can not be held responsible for the content of this page.
The author This site is solely responsible for the way in which the various concepts, and the freedoms that are taken with the reference works, are presented here. Remember that you must cross multiple source information to reduce the risk of errors.