java.awt.image

Class BufferStrategy

  • Direct Known Subclasses:
    Component.BltBufferStrategy, Component.FlipBufferStrategy

    public abstract class BufferStrategy
    extends Object
    The BufferStrategy class represents the mechanism with which to organize complex memory on a particular Canvas or Window. Hardware and software limitations determine whether and how a particular buffer strategy can be implemented. These limitations are detectible through the capabilities of the GraphicsConfiguration used when creating the Canvas or Window.

    It is worth noting that the terms buffer and surface are meant to be synonymous: an area of contiguous memory, either in video device memory or in system memory.

    There are several types of complex buffer strategies, including sequential ring buffering and blit buffering. Sequential ring buffering (i.e., double or triple buffering) is the most common; an application draws to a single back buffer and then moves the contents to the front (display) in a single step, either by copying the data or moving the video pointer. Moving the video pointer exchanges the buffers so that the first buffer drawn becomes the front buffer, or what is currently displayed on the device; this is called page flipping.

    Alternatively, the contents of the back buffer can be copied, or blitted forward in a chain instead of moving the video pointer.

     Double buffering:
    
                        ***********         ***********
                        *         * ------> *         *
     [To display] <---- * Front B *   Show  * Back B. * <---- Rendering
                        *         * <------ *         *
                        ***********         ***********
    
     Triple buffering:
    
     [To      ***********         ***********        ***********
     display] *         * --------+---------+------> *         *
        <---- * Front B *   Show  * Mid. B. *        * Back B. * <---- Rendering
              *         * <------ *         * <----- *         *
              ***********         ***********        ***********
    
     

    Here is an example of how buffer strategies can be created and used:

    
    
     // Check the capabilities of the GraphicsConfiguration
     ...
    
     // Create our component
     Window w = new Window(gc);
    
     // Show our window
     w.setVisible(true);
    
     // Create a general double-buffering strategy
     w.createBufferStrategy(2);
     BufferStrategy strategy = w.getBufferStrategy();
    
     // Main loop
     while (!done) {
         // Prepare for rendering the next frame
         // ...
    
         // Render single frame
         do {
             // The following loop ensures that the contents of the drawing buffer
             // are consistent in case the underlying surface was recreated
             do {
                 // Get a new graphics context every time through the loop
                 // to make sure the strategy is validated
                 Graphics graphics = strategy.getDrawGraphics();
    
                 // Render to graphics
                 // ...
    
                 // Dispose the graphics
                 graphics.dispose();
    
                 // Repeat the rendering if the drawing buffer contents
                 // were restored
             } while (strategy.contentsRestored());
    
             // Display the buffer
             strategy.show();
    
             // Repeat the rendering if the drawing buffer was lost
         } while (strategy.contentsLost());
     }
    
     // Dispose the window
     w.setVisible(false);
     w.dispose();
     
    Since:
    1.4
    See Also:
    Window, Canvas, GraphicsConfiguration, VolatileImage
    • Constructor Detail

      • BufferStrategy

        public BufferStrategy()
    • Method Detail

      • getCapabilities

        public abstract BufferCapabilities getCapabilities()
        Returns the BufferCapabilities for this BufferStrategy.
        Returns:
        the buffering capabilities of this strategy
      • getDrawGraphics

        public abstract Graphics getDrawGraphics()
        Creates a graphics context for the drawing buffer. This method may not be synchronized for performance reasons; use of this method by multiple threads should be handled at the application level. Disposal of the graphics object obtained must be handled by the application.
        Returns:
        a graphics context for the drawing buffer
      • contentsLost

        public abstract boolean contentsLost()
        Returns whether the drawing buffer was lost since the last call to getDrawGraphics. Since the buffers in a buffer strategy are usually type VolatileImage, they may become lost. For a discussion on lost buffers, see VolatileImage.
        Returns:
        Whether or not the drawing buffer was lost since the last call to getDrawGraphics.
        See Also:
        VolatileImage
      • contentsRestored

        public abstract boolean contentsRestored()
        Returns whether the drawing buffer was recently restored from a lost state and reinitialized to the default background color (white). Since the buffers in a buffer strategy are usually type VolatileImage, they may become lost. If a surface has been recently restored from a lost state since the last call to getDrawGraphics, it may require repainting. For a discussion on lost buffers, see VolatileImage.
        Returns:
        Whether or not the drawing buffer was restored since the last call to getDrawGraphics.
        See Also:
        VolatileImage
      • show

        public abstract void show()
        Makes the next available buffer visible by either copying the memory (blitting) or changing the display pointer (flipping).

Document created the 11/06/2005, last modified the 04/03/2020
Source of the printed document:https://www.gaudry.be/en/java-api-rf-java/awt/image/bufferstrategy.html

The infobrol is a personal site whose content is my sole responsibility. The text is available under CreativeCommons license (BY-NC-SA). More info on the terms of use and the author.

References

  1. View the html document Language of the document:fr Manuel PHP : https://docs.oracle.com

These references and links indicate documents consulted during the writing of this page, or which may provide additional information, but the authors of these sources can not be held responsible for the content of this page.
The author This site is solely responsible for the way in which the various concepts, and the freedoms that are taken with the reference works, are presented here. Remember that you must cross multiple source information to reduce the risk of errors.

Contents Haut