Algorithmes en programmation
Voici quelques liens relatifs aux algorithmes :
- Paradigmes :
- diviser pour régner (diviser la complexité ou le nombre de données à traiter)
- programmation dynamique (mémoïsation : éviter de recalculer les mêmes valeurs en mémorisant le résultat)
- algorithmes gloutons (résolution locale de petits problèmes de manière optimale)
- Générer et tester
- Branch and bound (utilisation de bornes, élaguage d'une partie de l'arbre)
- analyse amortie (mesure de la robustesse dans le pire des cas)
- Complexité :
- Tri par échanges (exchange sort ou bubble sort)
- Tri par sélection (selection sort)
- Tri par insertion (insertion sort)
- Tri Shell (shell sort), amélioration du tri par insertions
- Tri par tas (heap sort)
- Tri par fusion (merge sort)
- Tri rapide (quick sort)
- Divers
- Cryptologie
- Axiomes
- Matrices
- Graphes
- Parcourir un graphe
- Parcours en profondeur d'abord : Algorithme DFS (Depth First Search), complexité de (m), et de (n2) dans le pire des cas.
- Algorithme DFS de Tarjan
- Algorithme de Malgrange basé sur DFS
- Parcours en largeur d'abord : Algorithme BFS (Breadth First Search), complexité de (m).
- Implémentation de BFS par Linden
- Parcours en largeur lexicographique : Algorithme Lex-BFS (Lexicographic Breadth First Search
- Parcours en profondeur d'abord : Algorithme DFS (Depth First Search), complexité de (m), et de (n2) dans le pire des cas.
- Chemins et circuits
- Détecter la simple présence d'un chemin entre 2 sommets
- Détecter un chemin de longueur déterminée entre 2 sommets
- Calculer le nombre de longueur déterminée (>1) entre 2 sommets
- Calculer la matrice M ou M' : Algorithme de Warshall, complexité de (n3).
- Détecter un circuit dans un graphe
- Détecter un circuit passant par un sommet donné
- Détecter un circuit passant par un arc donné
- Rechercher un ou plusieurs chemins extrémaux des graphes pondérés (les plus courts ou les plus longs)
- Algorithme de Bellman-Kalaba (pas de circuits), complexité de (n2).
- Algorithme de Moore-Dijkstra (circuits nécessaires, poids positifs ou nuls), complexité de (n2).
- Algorithme de Ford-Bellman (avec ou sans circuits, détection de circuits absorbants, poids quelconques), complexité de (n3).
- Heusistique A* (avec ou sans circuits, bornes, et sommet destination pré-déterminé)
- Algorithme de Floyd-Warshall (accepte les poids négatifs, mais pas de cycle strictement négatif)
- Algorithme de Ford-Dantzig (graphe orienté, avec ou sans circuit, poids positifs et négatifs)
- Arbres couvrant (ARPM1, ou ACM2)
- Algorithme de Kruskal (graphe connexe, valué, non orienté)
- Algorithme de Prim (graphe connexe, valué, non orienté)
- Flux extémaux (minimum ou maximum)
- Algorithme de Ford-Fulkerson
- Algorithme de Edmonds-Karp
- Algorithme de flux bloquant de Dinitz
- Divers
- Construire la fermeture transitive d'un graphe orienté ou non orienté
- Algorithme de Warshall, complexité de (n3).
- Algorithme de Minoux (sans circuit), complexité entre (n3) et (∑dintj . dextj) (Minoux et Bartnik).
- Construire les composantes simplement connexes d'un graphe (via DFS), complexité de (m+n).
- Construire les composantes fortement connexes d'un graphe
- Algorithme de Foulkes, complexité de (n3).
- Algorithme de Malgrange, complexité de (m * nombre d'exécutions), de (n3) dans le pire des cas.
- Décomposer en niveaux. (sans circuit), complexité de (n2).
- Aide à la décision multicritère : ELECTRE
- Construire la fermeture transitive d'un graphe orienté ou non orienté
- Parcourir un graphe
Deutsche Übersetzung
Sie haben gebeten, diese Seite auf Deutsch zu besuchen. Momentan ist nur die Oberfläche übersetzt, aber noch nicht der gesamte Inhalt.Wenn Sie mir bei Übersetzungen helfen wollen, ist Ihr Beitrag willkommen. Alles, was Sie tun müssen, ist, sich auf der Website zu registrieren und mir eine Nachricht zu schicken, in der Sie gebeten werden, Sie der Gruppe der Übersetzer hinzuzufügen, die Ihnen die Möglichkeit gibt, die gewünschten Seiten zu übersetzen. Ein Link am Ende jeder übersetzten Seite zeigt an, dass Sie der Übersetzer sind und einen Link zu Ihrem Profil haben.
Vielen Dank im Voraus.
Dokument erstellt 13/12/2009, zuletzt geändert 26/10/2018
Quelle des gedruckten Dokuments:https://www.gaudry.be/de/programmer-algo.html
Die Infobro ist eine persönliche Seite, deren Inhalt in meiner alleinigen Verantwortung liegt. Der Text ist unter der CreativeCommons-Lizenz (BY-NC-SA) verfügbar. Weitere Informationen auf die Nutzungsbedingungen und dem Autor.