Rechercher dans le manuel MySQL
15.9.1.5 How Compression Works for InnoDB Tables
This section describes some internal implementation details about compression for InnoDB tables. The information presented here may be helpful in tuning for performance, but is not necessary to know for basic use of compression.
Compression Algorithms
Some operating systems implement compression at the file system level. Files are typically divided into fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation. Every time something inside a block is modified, the whole block is recompressed before it is written to disk. These properties make this compression technique unsuitable for use in an update-intensive database system.
MySQL implements compression with the help of the well-known zlib library, which implements the LZ77 compression algorithm. This compression algorithm is mature, robust, and efficient in both CPU utilization and in reduction of data size. The algorithm is “lossless”, so that the original uncompressed data can always be reconstructed from the compressed form. LZ77 compression works by finding sequences of data that are repeated within the data to be compressed. The patterns of values in your data determine how well it compresses, but typical user data often compresses by 50% or more.
InnoDB
supports the zlib
library up to version 1.2.11, which is the version bundled
with MySQL 8.0.
Unlike compression performed by an application, or compression
features of some other database management systems, InnoDB
compression applies both to user data and to indexes. In many
cases, indexes can constitute 40-50% or more of the total
database size, so this difference is significant. When
compression is working well for a data set, the size of the
InnoDB data files (the
file-per-table
tablespace or general
tablespace .ibd
files) is 25% to 50%
of the uncompressed size or possibly smaller. Depending on the
workload, this smaller
database can in turn lead to a reduction in I/O, and an increase
in throughput, at a modest cost in terms of increased CPU
utilization. You can adjust the balance between compression
level and CPU overhead by modifying the
innodb_compression_level
configuration option.
InnoDB Data Storage and Compression
All user data in InnoDB tables is stored in pages comprising a B-tree index (the clustered index). In some other database systems, this type of index is called an “index-organized table”. Each row in the index node contains the values of the (user-specified or system-generated) primary key and all the other columns of the table.
Secondary indexes in InnoDB tables are also B-trees, containing pairs of values: the index key and a pointer to a row in the clustered index. The pointer is in fact the value of the primary key of the table, which is used to access the clustered index if columns other than the index key and primary key are required. Secondary index records must always fit on a single B-tree page.
The compression of B-tree nodes (of both clustered and secondary
indexes) is handled differently from compression of
overflow pages used to
store long VARCHAR
, BLOB
,
or TEXT
columns, as explained in the
following sections.
Compression of B-Tree Pages
Because they are frequently updated, B-tree pages require special treatment. It is important to minimize the number of times B-tree nodes are split, as well as to minimize the need to uncompress and recompress their content.
One technique MySQL uses is to maintain some system information in the B-tree node in uncompressed form, thus facilitating certain in-place updates. For example, this allows rows to be delete-marked and deleted without any compression operation.
In addition, MySQL attempts to avoid unnecessary uncompression and recompression of index pages when they are changed. Within each B-tree page, the system keeps an uncompressed “modification log” to record changes made to the page. Updates and inserts of small records may be written to this modification log without requiring the entire page to be completely reconstructed.
When the space for the modification log runs out, InnoDB uncompresses the page, applies the changes and recompresses the page. If recompression fails (a situation known as a compression failure), the B-tree nodes are split and the process is repeated until the update or insert succeeds.
To avoid frequent compression failures in write-intensive
workloads, such as for OLTP
applications, MySQL sometimes reserves some empty space
(padding) in the page, so that the modification log fills up
sooner and the page is recompressed while there is still enough
room to avoid splitting it. The amount of padding space left in
each page varies as the system keeps track of the frequency of
page splits. On a busy server doing frequent writes to
compressed tables, you can adjust the
innodb_compression_failure_threshold_pct
,
and
innodb_compression_pad_pct_max
configuration options to fine-tune this mechanism.
Generally, MySQL requires that each B-tree page in an InnoDB
table can accommodate at least two records. For compressed
tables, this requirement has been relaxed. Leaf pages of B-tree
nodes (whether of the primary key or secondary indexes) only
need to accommodate one record, but that record must fit, in
uncompressed form, in the per-page modification log. If
innodb_strict_mode
is
ON
, MySQL checks the maximum row size during
CREATE TABLE
or
CREATE INDEX
. If the row does not
fit, the following error message is issued: ERROR
HY000: Too big row
.
If you create a table when
innodb_strict_mode
is OFF, and
a subsequent INSERT
or
UPDATE
statement attempts to create an index
entry that does not fit in the size of the compressed page, the
operation fails with ERROR 42000: Row size too
large
. (This error message does not name the index for
which the record is too large, or mention the length of the
index record or the maximum record size on that particular index
page.) To solve this problem, rebuild the table with
ALTER TABLE
and select a larger
compressed page size (KEY_BLOCK_SIZE
),
shorten any column prefix indexes, or disable compression
entirely with ROW_FORMAT=DYNAMIC
or
ROW_FORMAT=COMPACT
.
innodb_strict_mode
is not
applicable to general tablespaces, which also support compressed
tables. Tablespace management rules for general tablespaces are
strictly enforced independently of
innodb_strict_mode
. For more
information, see Section 13.1.21, “CREATE TABLESPACE Syntax”.
Compressing BLOB, VARCHAR, and TEXT Columns
In an InnoDB table, BLOB
,
VARCHAR
, and
TEXT
columns that are not part of
the primary key may be stored on separately allocated
overflow pages. We
refer to these columns as
off-page columns.
Their values are stored on singly-linked lists of overflow
pages.
For tables created in ROW_FORMAT=DYNAMIC
or
ROW_FORMAT=COMPRESSED
, the values of
BLOB
,
TEXT
, or
VARCHAR
columns may be stored
fully off-page, depending on their length and the length of the
entire row. For columns that are stored off-page, the clustered
index record only contains 20-byte pointers to the overflow
pages, one per column. Whether any columns are stored off-page
depends on the page size and the total size of the row. When the
row is too long to fit entirely within the page of the clustered
index, MySQL chooses the longest columns for off-page storage
until the row fits on the clustered index page. As noted above,
if a row does not fit by itself on a compressed page, an error
occurs.
For tables created in ROW_FORMAT=DYNAMIC
or
ROW_FORMAT=COMPRESSED
,
TEXT
and
BLOB
columns that are less than
or equal to 40 bytes are always stored in-line.
Tables that use ROW_FORMAT=REDUNDANT
and
ROW_FORMAT=COMPACT
store the first 768 bytes
of BLOB
,
VARCHAR
, and
TEXT
columns in the clustered
index record along with the primary key. The 768-byte prefix is
followed by a 20-byte pointer to the overflow pages that contain
the rest of the column value.
When a table is in COMPRESSED
format, all
data written to overflow pages is compressed “as
is”; that is, MySQL applies the zlib compression
algorithm to the entire data item. Other than the data,
compressed overflow pages contain an uncompressed header and
trailer comprising a page checksum and a link to the next
overflow page, among other things. Therefore, very significant
storage savings can be obtained for longer
BLOB
, TEXT
, or
VARCHAR
columns if the data is highly
compressible, as is often the case with text data. Image data,
such as JPEG
, is typically already compressed
and so does not benefit much from being stored in a compressed
table; the double compression can waste CPU cycles for little or
no space savings.
The overflow pages are of the same size as other pages. A row containing ten columns stored off-page occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an uncompressed table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table with an 8K page size, they occupy only 80K bytes. Thus, it is often more efficient to use compressed table format for tables with long column values.
For file-per-table
tablespaces, using a 16K compressed page size can reduce storage
and I/O costs for BLOB
,
VARCHAR
, or
TEXT
columns, because such data
often compress well, and might therefore require fewer overflow
pages, even though the B-tree nodes themselves take as many
pages as in the uncompressed form. General tablespaces do not
support a 16K compressed page size
(KEY_BLOCK_SIZE
). For more information, see
Section 15.6.3.3, “General Tablespaces”.
Compression and the InnoDB Buffer Pool
In a compressed InnoDB
table, every
compressed page (whether 1K, 2K, 4K or 8K) corresponds to an
uncompressed page of 16K bytes (or a smaller size if
innodb_page_size
is set). To
access the data in a page, MySQL reads the compressed page from
disk if it is not already in the
buffer pool, then
uncompresses the page to its original form. This section
describes how InnoDB
manages the buffer pool
with respect to pages of compressed tables.
To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains both the compressed and uncompressed form of a database page. To make room for other required database pages, MySQL can evict from the buffer pool an uncompressed page, while leaving the compressed page in memory. Or, if a page has not been accessed in a while, the compressed form of the page might be written to disk, to free space for other data. Thus, at any given time, the buffer pool might contain both the compressed and uncompressed forms of the page, or only the compressed form of the page, or neither.
MySQL keeps track of which pages to keep in memory and which to evict using a least-recently-used (LRU) list, so that hot (frequently accessed) data tends to stay in memory. When compressed tables are accessed, MySQL uses an adaptive LRU algorithm to achieve an appropriate balance of compressed and uncompressed pages in memory. This adaptive algorithm is sensitive to whether the system is running in an I/O-bound or CPU-bound manner. The goal is to avoid spending too much processing time uncompressing pages when the CPU is busy, and to avoid doing excess I/O when the CPU has spare cycles that can be used for uncompressing compressed pages (that may already be in memory). When the system is I/O-bound, the algorithm prefers to evict the uncompressed copy of a page rather than both copies, to make more room for other disk pages to become memory resident. When the system is CPU-bound, MySQL prefers to evict both the compressed and uncompressed page, so that more memory can be used for “hot” pages and reducing the need to uncompress data in memory only in compressed form.
Compression and the InnoDB Redo Log Files
Before a compressed page is written to a
data file, MySQL writes a
copy of the page to the redo log (if it has been recompressed
since the last time it was written to the database). This is
done to ensure that redo logs are usable for
crash recovery, even
in the unlikely case that the zlib
library is
upgraded and that change introduces a compatibility problem with
the compressed data. Therefore, some increase in the size of
log files, or a need for
more frequent
checkpoints, can be
expected when using compression. The amount of increase in the
log file size or checkpoint frequency depends on the number of
times compressed pages are modified in a way that requires
reorganization and recompression.
To create a compressed table in a file-per-table tablespace,
innodb_file_per_table
must be
enabled. There is no dependence on the
innodb_file_per_table
setting
when creating a compressed table in a general tablespace. For
more information, see Section 15.6.3.3, “General Tablespaces”.
Deutsche Übersetzung
Sie haben gebeten, diese Seite auf Deutsch zu besuchen. Momentan ist nur die Oberfläche übersetzt, aber noch nicht der gesamte Inhalt.Wenn Sie mir bei Übersetzungen helfen wollen, ist Ihr Beitrag willkommen. Alles, was Sie tun müssen, ist, sich auf der Website zu registrieren und mir eine Nachricht zu schicken, in der Sie gebeten werden, Sie der Gruppe der Übersetzer hinzuzufügen, die Ihnen die Möglichkeit gibt, die gewünschten Seiten zu übersetzen. Ein Link am Ende jeder übersetzten Seite zeigt an, dass Sie der Übersetzer sind und einen Link zu Ihrem Profil haben.
Vielen Dank im Voraus.
Dokument erstellt 26/06/2006, zuletzt geändert 26/10/2018
Quelle des gedruckten Dokuments:https://www.gaudry.be/de/mysql-rf-innodb-compression-internals.html
Die Infobro ist eine persönliche Seite, deren Inhalt in meiner alleinigen Verantwortung liegt. Der Text ist unter der CreativeCommons-Lizenz (BY-NC-SA) verfügbar. Weitere Informationen auf die Nutzungsbedingungen und dem Autor.
Referenzen
Diese Verweise und Links verweisen auf Dokumente, die während des Schreibens dieser Seite konsultiert wurden, oder die zusätzliche Informationen liefern können, aber die Autoren dieser Quellen können nicht für den Inhalt dieser Seite verantwortlich gemacht werden.
Der Autor Diese Website ist allein dafür verantwortlich, wie die verschiedenen Konzepte und Freiheiten, die mit den Nachschlagewerken gemacht werden, hier dargestellt werden. Denken Sie daran, dass Sie mehrere Quellinformationen austauschen müssen, um das Risiko von Fehlern zu reduzieren.