Opérations sur les matrices

Egalité de matrices

Définition

Deux matrices A = (aij) et B = (bij) sont égales si

  • elles sont de même format.
  • aij = bij pour tout i et j.

Somme de deux matrices

Définition

Soit deux matrices A = (aij) et B = (bij), la somme des deux matrices est une matrice C = (cij)

  • de même format.
  • telle que cij = aij + bij pour tout i et j.

Exemple

Soit A et B les matrices suivantes :

Matrice A
Matrice B

La somme des deux matrices est la matrice suivante :

Matrice C (somme des matrices A et B)

Remarque: l'addition est commutative (A+B=B+A).

Différence de deux matrices

Définition

Soit deux matrices A = (aij) et B = (bij), la différence des deux matrices est une matrice C = (cij)

  • de même format.
  • telle que cij = aij - bij pour tout i et j.

Exemple

Soit A et B les matrices suivantes :

Matrice A
Matrice B

La différence des deux matrices est la matrice suivante :

Matrice C (différence des matrices A et B)

Remarques :

  • La différence n'est pas commutative.
  • A-B = -(B-A).

Produit d'une matrice par un scalaire

Définition

Soit une matrice quelconque A = (aij), et un scalaire ß, le produit des deux est une matrice B = (bij)

  • de même format que A.
  • telle que bij = ßaij pour tout i et j.

Exemple

Soit A la matrice suivantes:

Matrice A

Le produit de la matrices et du scalaire 2 est la matrice suivante:

Matrice C (produit de la matrice A et du scalaire 2)

Produit de deux matrices

Définition

Soit deux matrices A = (aij) de format m*n, et B = (bij) de format n*p,
le produit des deux matrices est une matrice C = (cij)

  • de format m*p.
  • telle que cij est le produit de la ligne i de A par la colonne j de B pour tout i et j.

Exemple

Soit A et B les matrices suivantes:

Matrice A
Matrice B

Le produit des deux matrices est la matrice suivante:

Matrice C (produit de deux matrices)

Remarque:

  • Le produit matriciel n'est pas commutatif.

Deutsche Übersetzung

Sie haben gebeten, diese Seite auf Deutsch zu besuchen. Momentan ist nur die Oberfläche übersetzt, aber noch nicht der gesamte Inhalt.

Wenn Sie mir bei Übersetzungen helfen wollen, ist Ihr Beitrag willkommen. Alles, was Sie tun müssen, ist, sich auf der Website zu registrieren und mir eine Nachricht zu schicken, in der Sie gebeten werden, Sie der Gruppe der Übersetzer hinzuzufügen, die Ihnen die Möglichkeit gibt, die gewünschten Seiten zu übersetzen. Ein Link am Ende jeder übersetzten Seite zeigt an, dass Sie der Übersetzer sind und einen Link zu Ihrem Profil haben.

Vielen Dank im Voraus.

Dokument erstellt 19/03/2002, zuletzt geändert 26/10/2018
Quelle des gedruckten Dokuments:https://www.gaudry.be/de/matrices-operations.html

Die Infobro ist eine persönliche Seite, deren Inhalt in meiner alleinigen Verantwortung liegt. Der Text ist unter der CreativeCommons-Lizenz (BY-NC-SA) verfügbar. Weitere Informationen auf die Nutzungsbedingungen und dem Autor.