Algorithmes appliqués aux graphes

Voici quelques algorithmes qui s'appliquent au domaine des graphes. Nous allons nous intéresser à certains d'entre-eux (vous pouvez cliquer sur les liens pour plus de détails).

  • Parcourir un graphe
  • Chemins et circuits
    • Détecter la simple présence d'un chemin entre 2 sommets
    • Détecter un chemin de longueur déterminée entre 2 sommets
    • Calculer le nombre de longueur déterminée (>1) entre 2 sommets
    • Calculer la matrice M ou M' : Algorithme de Warshall, complexité de Ordre de grandeur(n3).
    • Détecter un circuit dans un graphe
    • Détecter un circuit passant par un sommet donné
    • Détecter un circuit passant par un arc donné
  • Rechercher un ou plusieurs chemins extrémaux des graphes pondérés (les plus courts ou les plus longs)
    • Algorithme de Bellman-Kalaba (pas de circuits), complexité de Ordre de grandeur(n2).
    • Algorithme de Moore-Dijkstra (circuits nécessaires, poids positifs ou nuls), complexité de Ordre de grandeur(n2).
    • Algorithme de Ford-Bellman (avec ou sans circuits, détection de circuits absorbants, poids quelconques), complexité de Ordre de grandeur(n3).
    • Heusistique A* (avec ou sans circuits, bornes, et sommet destination pré-déterminé)
    • Algorithme de Floyd-Warshall (accepte les poids négatifs, mais pas de cycle strictement négatif)
    • Algorithme de Ford-Dantzig (graphe orienté, avec ou sans circuit, poids positifs et négatifs)
  • Arbres couvrant (ARPM1, ou ACM2)
    • Algorithme de Kruskal (graphe connexe, valué, non orienté)
    • Algorithme de Prim (graphe connexe, valué, non orienté)
  • Flux extémaux (minimum ou maximum)
    • Algorithme de Ford-Fulkerson
    • Algorithme de Edmonds-Karp
    • Algorithme de flux bloquant de Dinitz
  • Divers
    • Construire la fermeture transitive d'un graphe orienté ou non orienté
    • Construire les composantes simplement connexes d'un graphe (via DFS), complexité de Ordre de grandeur(m+n).
    • Construire les composantes fortement connexes d'un graphe
    • Décomposer en niveaux. (sans circuit), complexité de Ordre de grandeur(n2).
    • Aide à la décision multicritère : ELECTRE

Deutsche Übersetzung

Sie haben gebeten, diese Seite auf Deutsch zu besuchen. Momentan ist nur die Oberfläche übersetzt, aber noch nicht der gesamte Inhalt.

Wenn Sie mir bei Übersetzungen helfen wollen, ist Ihr Beitrag willkommen. Alles, was Sie tun müssen, ist, sich auf der Website zu registrieren und mir eine Nachricht zu schicken, in der Sie gebeten werden, Sie der Gruppe der Übersetzer hinzuzufügen, die Ihnen die Möglichkeit gibt, die gewünschten Seiten zu übersetzen. Ein Link am Ende jeder übersetzten Seite zeigt an, dass Sie der Übersetzer sind und einen Link zu Ihrem Profil haben.

Vielen Dank im Voraus.

Dokument erstellt 27/11/2009, zuletzt geändert 26/10/2018
Quelle des gedruckten Dokuments:https://www.gaudry.be/de/graphes-algo.html

Die Infobro ist eine persönliche Seite, deren Inhalt in meiner alleinigen Verantwortung liegt. Der Text ist unter der CreativeCommons-Lizenz (BY-NC-SA) verfügbar. Weitere Informationen auf die Nutzungsbedingungen und dem Autor.

Aufzeichnungen
  1.  ARPM : Arbre Recouvrant de Poids Minimum

  2.  ACM : Arbre Couvrant Minimum

Inhaltsverzeichnis Haut