Calcul des prédicats : les substitutions

Une substitution est le fait de remplacer une variable par un autre terme. Nous représenterons la substitution au sein de l'ensemble par une lettre grecque, et l'opérateur de substitution par le signe  / , mais nous pouvons aussi retrouver dans certains ouvrages le signe = dont la signification est identique.

Nous traduirons la notation  { X / Y }  par « X est remplacé par Y »1.

Inhaltsverzeichnis Haut

Définition de la substitution

Une substitution est un ensemble de la forme σ  =   { X1 / t1, ..., Xn / tn }  tel que  

  •  ∀ i ∈  { 1, ..., n } Xi ∈ V
  •  ∀ i ∈  { 1, ..., n } ti ∈ T
  •  ∀ i, j ∈  { 1, ..., n } i ≠ j ⇒ Xi ≠ Xi
  •  ∀ i ∈  { 1, ..., n } Xi ≠ ti

Inhaltsverzeichnis Haut

Domaine et co-domaine

Soit σ  =   { X1 / t1, ..., Xn / tn }  une substitution, nous avons
dom(σ)  =   { X1, ..., Xn }  et codom(σ)  =  var(t1, ..., tn)

Inhaltsverzeichnis Haut

Exemples de substitutions

  •  { X / 1, Y / 2, Z / 3 }  substitue 1 à X (remplace X par la valeur 1), substitue 2 à Y, et 3 à Z.
  •  { X / 3, Y / f(Z) } 
  •  { X / Z, Y / f(Z) } 

Inhaltsverzeichnis Haut

Exemples non-valides

  •  { X / X, Y / 1 }  n'est pas une substitution car on ne peut substituer une variable par elle-même.
  •  { X / 1, X / 2, Y / 3 }  n'est pas une substitution car on ne peut lier une variable à deux termes différents. Sinon, devons nous substituer 1 ou 2 à X ?

Inhaltsverzeichnis Haut

Substitutions appliquées à des expressions

Nous pouvons aussi appliquer des substitutions sur des termes composés ou des expressions prédicatives. Si nous appliquons une substitution σ sur l'expressions prédicative E (dont nous noterons le résultat σE), nous devons remplacer, pour toute variable X que nous rencontrons dans E, la variable X par le terme t qui lui est associé dans E.

Substitution (σ) | Expression (E) | Résultat (σE) |
 { X / yeshayahou_leibowitz, Y / 1 }  | p(X, X, donald_knuth) | p(yeshayahou_leibowitz, yeshayahou_leibowitz, donald_knuth) |
 { X / marie_curie, Y / 1 }  | p(X, Z) | p(marie_curie, Z) |
 { X / yeshayahou_leibowitz, Y / f(Z) }  | p(g(Y), X, h(X), W) | p(g(f(Z)), yeshayahou_leibowitz, h(yeshayahou_leibowitz), W) |

Inhaltsverzeichnis Haut

Composition

Nous obtenons la composition σθ de σ  =   { X1 / t1, ..., Xn / tn }  par θ  =   { Y1 / u1, ..., Ym / um }  à partir de { X1 / t1θ, ..., Xn / tnθ, Y1 / u1, ..., Ym / um }  en supprimant tous les Xi / tiθ tels que Xi = tiθ et tous les Yj / uj tels que Yj ∈ codom(σ)

Inhaltsverzeichnis Haut

Cette page utilise des fonctions particulières d'affichage de formules (plus d'infos) , vous pouvez choisir entre un affichage mathml, un affichage html, et un affichage texte

Deutsche Übersetzung

Sie haben gebeten, diese Seite auf Deutsch zu besuchen. Momentan ist nur die Oberfläche übersetzt, aber noch nicht der gesamte Inhalt.

Wenn Sie mir bei Übersetzungen helfen wollen, ist Ihr Beitrag willkommen. Alles, was Sie tun müssen, ist, sich auf der Website zu registrieren und mir eine Nachricht zu schicken, in der Sie gebeten werden, Sie der Gruppe der Übersetzer hinzuzufügen, die Ihnen die Möglichkeit gibt, die gewünschten Seiten zu übersetzen. Ein Link am Ende jeder übersetzten Seite zeigt an, dass Sie der Übersetzer sind und einen Link zu Ihrem Profil haben.

Vielen Dank im Voraus.

Dokument erstellt 10/07/2010, zuletzt geändert 28/10/2018
Quelle des gedruckten Dokuments:https://www.gaudry.be/de/calcul-predicats-substitution.html

Die Infobro ist eine persönliche Seite, deren Inhalt in meiner alleinigen Verantwortung liegt. Der Text ist unter der CreativeCommons-Lizenz (BY-NC-SA) verfügbar. Weitere Informationen auf die Nutzungsbedingungen und dem Autor.

Aufzeichnungen
  1.  Notation : Dans certains ouvrages  { Y / X }  est traduit par « Y remplace X », mais nous n'utiliserons jamais cette notation dans les pages qui suivent car cette notation est inversée par rapport à celle que nous utilisons. Une fois qu'un choix de notation est pris, nous devons nous y tenir afin d'éviter toute confusion possible.

Inhaltsverzeichnis Haut

Referenzen

  1. Buch Sprache des Dokuments:fr IHDCB337 - Technique d'intelligence artificielle : JM Jacquet, Programmation déclarative (2009)
  2. Buch Sprache des Dokuments:fr IHDCB337 - Technique d'intelligence artificielle : H Toussaint, Tp (2009)
  3. Buch Sprache des Dokuments:fr Logique pour l'informatique : Serenella Cerrito, Introduction à la déduction automatique (October 2008)

Diese Verweise und Links verweisen auf Dokumente, die während des Schreibens dieser Seite konsultiert wurden, oder die zusätzliche Informationen liefern können, aber die Autoren dieser Quellen können nicht für den Inhalt dieser Seite verantwortlich gemacht werden.
Der Autor Diese Website ist allein dafür verantwortlich, wie die verschiedenen Konzepte und Freiheiten, die mit den Nachschlagewerken gemacht werden, hier dargestellt werden. Denken Sie daran, dass Sie mehrere Quellinformationen austauschen müssen, um das Risiko von Fehlern zu reduzieren.

Inhaltsverzeichnis Haut